
1

Engineering
for Data Scientists

2

Juha Kiili
Senior Software Developer, Product Owner at Valohai

Senior Software Developer with gaming industry background
shape-shifted into a full-stack ninja. I have the biggest monitor.

Contents

Foreword	 3

Git	 4

Python dependencies	 12

Docker	 19

What every data scientist should know about the command line	 30

What every data scientist should know about programming tools	 43

Final takeaways	 54

About the author

3

Foreword

Software engineering has come a long way. It’s no longer just about getting
a functioning piece of code on a floppy disk; it’s about the craft of making
software. There’s a good reason for it too. Code lives for a long time.

Thus there are a lot of strong opinions about good engineering practices that
make developing software for the long haul possible and more enjoyable.
I think enjoyability is an important word here because most software
developers know the pain of fixing poorly developed and poorly documented
legacy software.

Data scientists are also entering this world because machine learning
is becoming a core part of many products. While a heterogenous bunch
with various backgrounds, data scientists are more commonly from
academia and research than software engineering. The slog of building
and maintaining software isn’t as familiar as it is to most developers, but
it will be soon enough. It’s better to be prepared with a solid foundation of
best practices, so it’ll be easier to work with software engineers, and it’ll be
easier to maintain what you build.

This eBook is to help pick up engineering best practices with simple tips.
I hope that we can teach even the most seasoned pros something new
and get you talking with your team on how you should be building things.
Remember, as machine learning becomes a part of software products, it too
will live for a long time.

This eBook isn’t about Valohai – although there is a section about our MLOps
platform at the end – but good engineering is close to our heart.

4

Git

What is Git?

Git is a version control system
designed to track changes in
a source code over time.

When many people work on
the same project without
a version control system
it's total chaos. Resolving
the eventual conflicts becomes
impossible as none has kept track of their changes and it becomes very hard
to merge them into a single central truth. Git and higher-level services built
on top of it (like Github) offer tools to overcome this problem.

Usually, there is a single central repository (called "origin" or "remote") which
the individual users will clone to their local machine (called "local" or "clone").
Once the users have saved meaningful work (called "commits"), they will send
it back ("push" and "merge") to the central repository.

What is the difference between Git & GitHub?

Git is the underlying technology and its command-line client (CLI) for tracking
and merging changes in a source code.

GitHub is a web platform built on top of git technology to make it easier.
It also offers additional features like user management, pull requests,
automation. Other alternatives are for example GitLab and Sourcetree.

Terminology

•	 Repository – "Database" of all the branches and commits of a single
project

•	 Branch – Alternative state or line of development for a repository.

•	 Merge – Merging two (or more) branches into a single branch, single truth.

•	 Clone – Creating a local copy of the remote repository.

•	 Origin – Common alias for the remote repository which the local clone
was created from

5

•	 Main / Master – Common name for the root branch, which is the central
source of truth.

•	 Stage – Choosing which files will be part of the new commit

•	 Commit – A saved snapshot of staged changes made to the file(s) in the
repository.

•	 HEAD – Shorthand for the current commit your local repository is currently on.

•	 Push – Pushing means sending your changes to the remote repository for
everyone to see

•	 Pull – Pulling means getting everybody else's changes to your local
repository

•	 Pull Request – Mechanism to review & approve your changes before
merging to main/master

Basic commands

•	 git init (Documentation) – Create a new repository on your local
computer.

•	 git clone (Documentation) – Start working on an existing remote
repository.

•	 git add (Documentation) – Choose file(s) to be saved (staging).

•	 git status (Documentation) – Show which files you have changed.

•	 git commit (Documentation) – Save a snapshot (commit) of the chosen
file(s).

•	 git push (Documentation) – Send your saved snapshots (commits) into
the remote repository.

•	 git pul l (Documentation) – Pull recent commits made by others into
your local computer.

•	 git branch (Documentation) – Create or delete branches.

•	 git checkout (Documentation) – Switch branches or undo changes
made to local file(s).

•	 git merge (Documentation) – Merge branches to form a single truth.

https://git-scm.com/docs/git-init
https://git-scm.com/docs/git-clone
https://git-scm.com/docs/git-add
https://git-scm.com/docs/git-status
https://git-scm.com/docs/git-commit
https://git-scm.com/docs/git-push
https://git-scm.com/docs/git-pull
https://git-scm.com/docs/git-branch
https://git-scm.com/docs/git-checkout
https://git-scm.com/docs/git-pull

6

Rules of thumb for Git

Don't push datasets

Git is a version control system designed to serve software developers.
It has great tooling to handle source code and other related content like
configuration, dependencies, documentation. It is not meant for training data.
Period. Git is for code only.

In software development,
code is king and everything
else serves the code. In data
science, this is no longer
the case and there is a
duality between data
and code. It doesn't
make sense for the code
to depend on data any more
than it makes sense for data to depend on code. They should be decoupled
and this is where the code-centric software development model fails you. Git
shouldn't be the central point of truth for a data science project.

There are extensions like LFS that refer to external datasets from a git
repository. While they serve a purpose and solve some of the technical limits
(size, speed), they do not solve the core problem of a code-centric software
development mindset rooted in git.

You will always have datasets floating around in your local directory though.
It is quite easy to accidentally stage and commit them if you are not careful.
The correct way to make sure that you don't need to worry about datasets
with git is to use the .git ignore config file. Add your datasets or data folder
into the config and never look back.

Example:

ignore archives
*.zip
*.tar
*.tar.gz
*.rar

ignore dataset folder and subfolders
datasets/

7

Don't push secrets

This should be obvious, yet
the constant real-world
mistakes prove to us it is
not. It doesn't matter if the
repository is private either. In no circumstances should
anyone commit any username, password, API token, key
code, TLS certificates, or any other sensitive data into git.

Even private repositories are accessible by multiple accounts and are
also cloned to multiple local machines. This gives the hypothetical attacker
exponentially more targets. Remember that private repositories can also
become public at some point.

Decouple your secrets from your code and pass them using the environment
instead. For Python, you can use the common .env file with which holds the
environment variables, and the .git ignore file which makes sure that the
.env file doesn't get pushed to the remote git repository. It is a good idea to

also provide the .env.template so others know what kind of environment
variables the system expects.

.env:

API_TOKEN=98789fsda789a89sdafsa9f87sda98f7sda89f7

.env.template:

API_TOKEN=
.gitignore:

.env
hello.py:

from dotenv import load_dotenv
load_dotenv()
api_token = os.getenv('API_TOKEN')

This still requires some manual copy-pasting for anyone cloning the repository
for the first time. For more advanced setup, there are encrypted, access-
restricted tools that can share secrets through the environment, such as Vault.

Note: If you already pushed your secrets to the remote repository, do not try
to fix the situation by simply deleting them. It is too late as git is designed
to be immutable. Once the cat is out of the bag, the only valid strategy is to
change the passwords or disable the tokens.

8

Don't push notebook outputs

Notebooks are cool because they let you
not only store code but also the cell
outputs like images, plots, tables. The
problem arises when you commit
and push the notebook with its
outputs to git.

The way notebooks serialize all the images, plots, and tables is not pretty.
Instead of separate files, it encodes everything as JSON gibberish into the
. ipynb file. This makes git confused.

Git thinks that the JSON gibberish is equally important as your code. The
three lines of code that you changed are mixed with three thousand lines
that were changed in the JSON gibberish. Trying to compare the two versions
becomes useless due to all the extra noise.

Source: ReviewNB Blog

It becomes even more confusing if you have changed some code after the
outputs were generated. Now the code and outputs that are stored in the
version control do not match anymore.

There are two options at your disposal.

You can manually clear the outputs from the main menu (Cells -> All Output ->
Clear) before creating your git commit.

You can set up a pre-commit hook for git that clears outputs automatically

We highly recommend investing to option #2 as manual steps that you need
to remember are destined to fail eventually.

https://blog.reviewnb.com/jupyter-version-control/
https://zhauniarovich.com/post/2020/2020-06-clearing-jupyter-output/

9

Don't use the --force

Sometimes when you try to push to
the remote repository, git tells you that
something is wrong and aborts. The error
message might offer you an option to "use
the force" (the -f or --force). Don't do
it! Even if the error message calls for your
inner Jedi, just don't. It's the dark side.

Obviously, there are reasons why the --force exists and it serves a purpose
in some situations. None of those arguments apply to you young padawan.
Whatever the case, read the error message, try to reason what could be the
issue, ask someone else to help you if needed, and get the underlying issue fixed.

Do small commits with clear descriptions

Inexperienced users often fall into the trap
of making huge commits with nonsensical
descriptions. A good rule of thumb for any
single git commit is that it should only do
one thing. Fix one bug, not three. Solve one
issue, not twelve. Remember that issues can
often be split into smaller chunks, too. The
smaller you can make it, the better.

The reason you use version control is that
someone else can understand what has
happened in the past. If your commit fixes
twelve bugs and the description says "Model
fixed", it is close to zero value two months later. The commit should only do
one thing and one thing only. The description should communicate the thing
was. You don't need to make the descriptions long-winded novels if the
commits are small. In fact, a long description for a commit message implies
that the commit is too big and you should split it into smaller chunks!

Example #1: a bad repository

10

Example #2: a good repository

In real life you often make all kinds of ad-hoc things and end up in the
situation #1 on your local machine. If you haven't pushed anything to the
public remote yet, you can still fix the situation. We recommend learning how
to use the interactive rebase.

Simply use:

git rebase -i or igin/main

The interactive mode offers many different options for tweaking the history,
rewording commit messages, and even changing the order. Learn more about
the interactive rebase from here.

Don't be afraid of branching & pull requests

Branching and especially pull
requests are slightly more
advanced and not everyone's cup
of tea, but if your data science
project is mature, in production,
and constantly touched by many
different people, pull requests
may be just the thing that is
missing from your process.

When you create a new git
repository, it will start with just a
single branch called main (or master).
The main branch is considered as the "central truth". Branching means that
you will branch out temporarily to create a new feature or a fix to an old one.
In the meantime, someone else can work in parallel on their own branch. This
is commonly referred to as feature branch workflow.

https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History

11

The idea with branches is to eventually merge back to the main branch and
update "the central truth". This is where pull requests come into play. The
rest of the world doesn't care about your commits in your own branch, but
merging to main is where your branch becomes the latest truth. That is
when it's time to make a pull request.

Pull requests are not a git concept, but a GitHub concept. They are a request
for making your branch the new central truth. Using the pull request, other
users will check your changes before they are allowed to become the new
central truth. GitHub offers great tools to make comments, suggest their
modifications, signal approval, and finally apply the merge automatically.

12

Python dependencies

What is dependency management anyway?

Dependency management is the act of managing all the external pieces

that your project relies on. It has the risk profile of a sewage system. When it

works, you don’t even know it’s there, but it becomes excruciating and almost

impossible to ignore when it fails.

Every project is built on someone else's sweat and tears.

Those days when an engineer woke up, made coffee,

and started a new project by writing a bootloader – the

program that boots up your computer from scratch –

are history. There are massive stacks of software and

libraries beneath us. We are simply sprinkling our own

thin layer of sugar on top.

My computer has a different stack of software than

yours. Not only are the stacks different, but they are forever changing. It is

amazing how anything works, but it does. All thanks to the sewage system of

dependency management and a lot of smart people abstracting the layers so

that we can just call our favorite pandas function and get predictable results.

Basics of Python dependency management

Let's make one thing clear. Simply Installing and upgrading Python packages

is not dependency management. Dependency management is documenting

the required environment for your project and making it easy and

deterministic for others to reproduce it.

You could write installation instructions on a piece of paper. You could write them

in your source code comments. You could even hardcode the install commands

straight into the program. Dependency management? Yes. Recommended? Nope.

The recommended way is to decouple the dependency information from the code

in a standardized, reproducible, widely-accepted format. This allows version

pinning and easy deterministic installation. There are many options, but we’ll

describe the classic combination of pip and requirements.txt file in this article.

But before we go there, let's first introduce the atomic unit of Python

dependency: the package.

13

What is a package?

"Package" is a well-defined term in Python. Terms like library, framework,
toolkit are not. We will use the term "package" for the remainder of this article,
even for the things that some refer to as libraries, frameworks, or toolkits.

A module is everything defined in a single Python file (classes, functions, etc.).

A package is a collection of modules.

Pandas is a package, Matplotlib is a package, print()-function is not a package.
The purpose of a package is to be an easily distributable, reusable, and versioned
collection of modules with well-defined dependencies to other packages.

You are probably working with packages every day by referring to them in
your code with the Python import statement.

The art of installing packages

While you could install packages by simply downloading them manually to
your project, the most common way to install a package is via PyPi (Python
Package Index) using the famous pip instal l command.

Note: Never use sudo pip instal l . Never. It is like running a virus. The
results are unpredictable and will cause your future self major pain.

Never install Python packages globally either. Always use virtual environments.

What are virtual environments?

Python virtual environment is a safe bubble. You should create a protective
bubble around all the projects on your local computer. If you don't, the projects
will hurt each other. Don't let the sewage system leak!

If you call pip instal l pandas outside the
bubble, it will be installed globally. This is bad.
The world moves forward and so do packages.
One project needs the Matplotlib of 2019 and
the other wants the 2021 version. A single
global installation can't serve both projects. So
protective bubbles are a necessity. Let's look at
how to use them.

14

Go to your project root directory and create a virtual environment:

python3 -m venv mybubble

Now we have a bubble, but we are not in it yet. Let's go in!

source mybubble/bin/activate

Now we are in the bubble. Your terminal should show the virtual
environment name in parenthesis like this:

(mybubble) johndoe@hello:~/myproject$

Now that we are in the bubble, installing packages is safe. From now on, any
pip install command will only have effects inside the virtual environment. Any
code you run will only use the packages inside the bubble.

If you list the installed packages you should see a very short list of currently
installed default packages (like the pip itself).

pip l ist

Package Version
------------- -------
pip 20.0.2
pkg-resources 0.0.0
setuptools 44.0.0

This listing is no longer for all the Python packages in your machine, but all the
Python packages inside your virtual environment. Also, note that the Python
version used inside the bubble is the Python version you used to create the
bubble.

To leave the bubble, simply call deactivate command.

Always create virtual environments for all your local projects and run your
code inside those bubble(s). The pain from conflicting package versions
between projects is the kind of pain that makes people quit their jobs. Don't
be one of those people.

What is version pinning?

Imagine you have a project that depends on Pandas package and you want
to communicate that to the rest of the world (and your future self). Should be
easy, right?

15

First of all, it is risky to just say: "You need Pandas".

The less risky option is "You need Pandas 1.2.1",
but even that is not always enough.

Let's say you are correctly pinning the Pandas
version to 1.2.1. Pandas itself has a dependency
for numpy, but unfortunately doesn't pin the
dependency to an exact numpy version. Pandas
itself just says "You need numpy" and does not
pin to an exact version.

At first, everything is fine, but after six months, a new numpy version 1.19.6 is
released with a showstopper bug.

Now if someone installs your project, they'll get pandas 1.2.1 with buggy
numpy 1.19.6, and probably a few gray hairs as your software spits weird
errors. The sewage system is leaking. The installation process was not
deterministic!

The most reliable way is to pin everything. Pin the dependencies of the
dependencies of the dependencies of the dependencies, of the… You'll get
the point. Pin'em as deep as the rabbit hole goes. Luckily there are tools that
make this happen for you.

Note: If you are building a reusable package and not a typical project, you
should not pin it so aggressively (this is why Pandas doesn't pin to the
exact Numpy version). It is considered best practice for the end-user of the
package to decide what and how aggressively pin. If you as a package creator
pin everything, then you close that door from the end-user.

How do I pin Python dependencies?

Whenever you call pip instal l to get some hot new package into your
project, you should stop and think for a second. This will create a new
dependency for your project. How do I document this?

You should write down new libraries and their version number to a
requirements.txt file. It is a format understood by pip to install multiple
packages in one go.

16

requirements.txt

pandas==1.2.1
matplotl ib==3.4.0

Install

pip instal l -r requirements.txt

This is already much better than most data science projects that one
encounters, but we can still do better. Remember the recursive dependency
rabbit hole from the previous chapter about version pinning. How do we make
the installation more deterministic?

The answer is pip-compile command and requirements. in text file.

Requirements.in

matplotl ib==3.4.0

Auto-generate requirements.txt

pip-compile requirements. in

Generated requirements.txt

cycler==0.11.0

 # via matplotl ib

kiwisolver==1.3.2

 # via matplotl ib

matplotl ib==3.4.0

 # via -r requirements. in

numpy==1.22.0

 # via

 # matplotl ib

 # pandas

pandas==1.2.1

 # via -r requirements. in

pi l low==9.0.0

 # via matplotl ib

pyparsing==3.0.6

 # via matplotl ib

17

python-dateuti l==2.8.2

 # via

 # matplotl ib

 # pandas

pytz==2021.3

 # via pandas

six==1.16.0

 # via python-dateuti l

In the requirements.in you should only put your direct dependencies.

The pip-compile will then generate the perfect pinning of all the libraries into
the requirements.txt, which provides all the information for a deterministic
installation. Easy peasy! Remember to commit both files into your git
repository, too.

How to pin the Python version?

Pinning the Python version is tricky. There is no straightforward way to pin
the version dependency for Python itself (without using e.g conda).

You could make a Python package out of your
project, which lets you define the Python version
in the setup.py or setup.cfg with the key

python_requires>=3.9 , but that is overkill
for a typical data science project, which
usually doesn't have the characteristics of a
reusable package anyway.

If you are really serious about pinning to
specific Python, you could also do something like this in your code:

import sys
if sys.version_info < (3,9) :
 sys.exit("Python >= 3.9
required.")

The most bullet-proof way to force the Python version is to use Docker
containers, which we will talk about in the next chapter!

18

Main takeaways

Don't avoid dependency management – Your future self will appreciate the
documented dependencies when you pour coffee all over your MacBook.

Always use virtual environments on your local computer – Trying out that
esoteric Python library with 2 GitHub stars is no big deal when you are safely
inside the protective bubble.

Pinning versions is better than not pinning – Version pinning protects
from packages moving forward when your project is not.

Packages change a lot, Python not so much – Even a single package can
have dozens of nested dependencies and they are constantly changing, but
Python is relatively stable and future-proof.

What about the cloud?

When your project matures enough and elevates into the cloud and into
production, you should look into pinning the entire environment and not just
the Python stuff.

This is where Docker containers are your best friend as they not only let you
pin the Python version but anything inside the operating system. It is like a
virtual environment but on a bigger scale.

19

Docker

What is Docker?

Imagine being an astronaut on a space station
and planning to go outside and enjoy the
view. You’d be facing hostile conditions. The
temperature, oxygen, and radiation are not
what you were built for. Human beings
require a specific environment to thrive. To
properly function in any other scenario, like
deep in the sea or high up in space, we need
a system to reproduce that environment.
Whether it is a spacesuit or a submarine, we need
isolation and something that ensures the levels of
oxygen, pressure, and temperature we depend on.

In other words, we need a container.

Any software faces the same problem as the astronaut. As soon as we
leave home and go out into the world, the environment gets hostile, and a
protective mechanism to reproduce our natural environment is mandatory.
The Docker container is the spacesuit of programs.

Docker isolates the software from all other things on the same system. A
program running inside a “spacesuit” generally has no idea it is wearing one
and is unaffected by anything happening outside.

20

The containerized stack

Application: High-level application (your data science project)

Dependencies: Low-level generic software (think Tensorflow or Python)

Docker container: The isolation layer

Operating system: Low-level interfaces and drivers to interact with the
hardware

Hardware: CPU, Memory, Hard disk, Network, etc.

The fundamental idea is to package an application and its dependencies
into a single reusable artifact, which can be instantiated reliably in different
environments.

How to create a container?

The flow to create Docker containers:

1. Dockerfile: Instructions for compiling an image

2. Image: Compiled artifact

3. Container: An executed instance of the image

Dockerfile

First, we need instructions.

We could define the temperature, radiation, and oxygen levels for a spacesuit,
but we need instructions, not requirements. Docker is instruction-based, not
requirement-based. We will describe the how and not the what. To do that,
we create a text file and name it Dockerf i le .

21

Dockerfile

FROM python:3.9
RUN pip instal l tensorflow==2.7.0
RUN pip instal l pandas==1.3.3

The FROM command describes a base environment, so
we don’t need to start from scratch. A treasure trove of
base images can be found from the DockerHub or via
google searches.

The RUN command is an instruction to change
the environment.

Note: While our example installs Python libraries
one by one, that is not recommended. The best
practice is to utilize requirements.txt , which
defines the Python dependencies. Follow the best
practices from our previous chapter to create one.

Dockerfile with requirements.txt

FROM python:3.9
COPY requirements.txt /tmp
RUN pip instal l -r /tmp/requirements.txt

The COPY command copies a file from your local disk, like the
requirements.txt , into the image. The RUN command here installs all the

Python dependencies defined in the requirements.txt in one go.

Note: All the familiar Linux commands are at your disposal when using RUN.

Docker image

Now that we have our Dockerf i le , we can compile it into a binary artifact
called an image.

The reason for this step is to make it faster and reproducible. If we didn’t
compile it, everyone needing a spacesuit would need to find a sewing machine
and painstakingly run all the instructions for every spacewalk. That is too slow
but also indeterministic. Your sewing machine might be different from mine.

22

The tradeoff for speed and quality is that images can be quite large, often
gigabytes, but a gigabyte in 2022 is peanuts anyway.

To compile, use the build command:

docker bui ld . -t myimage:1.0

This builds an image stored on your local machine. The -t parameter defines
the image name as “myimage” and gives it a tag “1.0”. To list all the images, run:

This builds an image stored on your local machine. The -t parameter defines
the image name as “myimage” and gives it a tag “1.0”. To list all the images, run:

docker image list

REPOSITORY	 TAG	 IMAGE ID	 CREATED	 SIZE
<none>	 <none>	 85eb1ea6d4be	 6 days ago	 2.9GB
myimagename	1.0	 ff732d925c6e	 6 days ago	 2.9GB
myimagename	1.1	 ff732d925c6e	 6 days ago	 2.9GB
myimagename	latest	 ff732d925c6e	 6 days ago	 2.9GB
python	 3.9	 f88f0508dc46	 13 days ago	 912MB

Docker container

Finally, we are ready for our spacewalk. Containers are the real-life instances
of a spacesuit. They are not really helpful in the wardrobe, so the astronaut
should perform a task or two while wearing them.

The instructions can be baked into the image or provided just in time before
starting the container. Let’s do the latter.

docker run myimagename:1.0 echo "Hel lo world"

This starts the container, runs a single echo command, and closes it down.

Now we have a reproducible method to execute our code in any environment
that supports Docker. This is very important in data science, where each project
has many dependencies, and reproducibility is at the heart of the process.

Containers close down automatically when they have executed their
instructions, but containers can run for a long time. Try starting a very long
command in the background (using your shell’s & operator):

23

docker run myimagename:1.0 sleep 100000000000 &

You can see our currently running container with:

docker container l ist

To stop this container, take the container ID from the table and call:

docker stop <CONTAINER ID>

This stops the container, but its state is kept around. If you call

docker ps -a

You can see that the container is stopped but still exists. To completely
destroy it:

docker rm <CONTAINER ID>

The single command combining both stopping and removing:

docker rm -f <CONTAINER_ID>

To remove all stopped leftover containers:

docker container prune

Tip: You can also start a container with an interactive shell:

$ docker run -it myimagename:1.0 /bin/bash
root@9c4060d0136e:/# echo "hel lo"
hel lo
root@9c4060d0136e:/# exit
exit
$ <back in the host shel l>

It is great for debugging the inner workings of an image when you can freely
run all the Linux commands interactively. Go back to your host shell by
running the exit command.

Terminology and Naming

Registry = Service for hosting and distributing images. The default registry is
the Docker Hub.

24

Repository = Collection of related images with the same name but different
tags. Usually, different versions of the same application or service.

Tag = An identifier attached to images within a repository (e.g., 14.04 or stable)

ImageID = Unique identifier hash generated for each image

The official documentation declares:

An image name is made up of slash-separated name components, optionally
prefixed by a registry hostname.

It means that you can encode registry hostname and a bunch of slash-separated
“name components” into the name of your image. Honestly, this is quite
convoluted, but such is life.

The fundamental format is:

<name>:<tag>

But in practice it is:

<registry>/<name-component-1>/
<name-component-2>:<tag>

It may vary per platform. For Google Cloud Platform (GCP) the convention is:

<registry>/<project-id>/
<repository-name>/<image>@<image-digest>:<tag>

It is up to you to figure out the correct naming scheme for your case.

Note: The latest tag will be used if you pull
an image without any tags. Never use
this latest tag in production.
Always use a tag with a unique
version or hash instead since
someone inevitably will update the
“latest” image and break your build.
What is the latest today is no longer
the latest tomorrow! The astronaut
doesn't care about the latest bells and
whistles. They just want a spacesuit
that fits them and keeps them alive.

25

Docker images and secrets

Just like it is a terrible practice to push secrets into a git repository, you
shouldn’t bake them into your Docker images either!

Images are put into repositories and passed around carelessly. The correct
assumption is that whatever goes into an image may be public at some
point. It is not a place for your username, password, API token, key code, TLS
certificates, or any other sensitive data.

There are two scenarios with secrets and docker images:

1. You need a secret at build-time

2. You need a secret at runtime

Neither case should be solved by baking things permanently into the image.
Let’s look at how to do it differently.

Build-time secrets

If you need something private – say a private
GitHub repository – to be pulled into the
image at build time, you need to make sure
that the SSH keys you are using do not
leak into the image.

Do NOT use COPY instruction to move
keys or passwords into the image! Even if
you remove them afterward, they will still
leave a trace!

Quick googling will give you many different options to solve this problem,
like using multi-stage builds, but the best and most modern way is to use
BuildKit. BuildKit ships with Docker but needs to be enabled for builds by
setting up the environment variable DOCKER_BUILDKIT .

For example:

DOCKER_BUILDKIT=1 docker bui ld .

BuildKit offers a mechanism to make secret files safely available for the build
process.

26

Let’s first create secret.txt with the contents:

TOP SECRET ASTRONAUT PASSWORD

Then create a new Dockerfi le :

FROM alpine

RUN --mount=type=secret,
id=mypass cat /run/secrets/mypass

The --mount=type=secret, id=mypass is informing Docker that for this
specific command, we need access to a secret called mypass (the contents
of which we’ll tell the Docker build about in the next step). Docker will make
this happen by temporarily mounting a file /run/secrets/mypass .

The cat /run/secrets/mypass is the actual instruction, where cat is a
Linux command to output the contents of a file into the terminal. We call it to
validate that our secret was indeed available.

Let’s build the image, adding `--secret` to inform `docker build` about where
to find this secret:

DOCKER_BUILDKIT=1 docker build . -t myimage --secret
id=mypass,src=secret.txt

Everything worked, but we didn’t see the contents of secret.txt printed out
in our terminal as we expected. The reason is that BuildKit doesn’t log every
success by default.

Let’s build the image using additional parameters. We add BUILDKIT_
PROGRESS=plain to get more verbose logging and --no-cache to make
sure caching doesn’t ruin it:

DOCKER_BUILDKIT=1 BUILDKIT_PROGRESS=plain docker build .
--no-cache --secret id=mypass,src=secret.txt

Among all the logs printed out, you should find this part:

27

#5 [2/2] RUN --mount=type=secret,id=mypass cat /run/secrets/
mypass
#5 sha256:7fd248d616c172325af799b6570d2522d3923638ca41181fa
b438c29d0aea143
#5 0.248 TOP SECRET ASTRONAUT PASSWORD

It is proof that the build step had access to secret.txt .

With this approach, you can now safely mount secrets to the build process
without worrying about leaking keys or passwords to the resulting image.

Runtime secrets

If you need a secret – say database credentials – when your container is
running in production, you should use environment variables to pass secrets
into the container.

Never bake any secrets straight into the image at build time!

docker run --env MYLOGIN=johndoe --env
MYPASSWORD=sdf4otwe3789

These will be accessible in Python like:

os.environ.get(‘MYLOGIN’)
os.environ.get(‘MYPASSWORD’)

Tip: You can also fetch the secrets from a secret store like Hashicorp Vault!

GPU support

Docker with GPUs can be tricky. Building an image from scratch is beyond
the scope of this article, but there are five prerequisites for a modern GPU
(NVIDIA) container.

Image:

•	 CUDA/cuDNN libraries

•	 GPU versions of your framework like Tensorflow (when needed)

Host machine:

•	 GPU drivers

28

•	 NVidia Docker Toolkit

•	 Docker run executed with --gpus al l

The best approach is finding a base image with most prerequisites already
baked in. Frameworks like Tensorflow usually offer images like tensorflow/

tensorflow:latest-gpu , which are a good starting point.

When troubleshooting, you can first try to test your host machine:

nvidia-smi

Then run the same command inside the container:

docker run --gpus al l tensorflow/tensorflow:latest-gpu
nvidia-smi

You should get something like this for both commands:

If you get an error from either, you’ll have an idea whether the problem lies
inside or outside the container.

It’s also a good idea to test your frameworks. For example Tensorflow:

docker run --gpus all -it --rm tensorflow/
tensorflow:latest-gpu python -c "import
tensorflow as tf;print(tf.reduce_sum
(tf.random.normal([1000, 1000])))"

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html

29

The output may be verbose and have some warnings, but it should end with
something like:

Created device /job:localhost/replica:0/task:0/
device:GPU:0 with 3006 MB memory: -> device: 0, name:
NVIDIA GeForce GTX 970, pci bus id: 0000:01:00.0,
compute capability: 5.2
tf.Tensor(-237.35098, shape=(), dtype=float32)

Docker containers
vs. Python virtual
environments

Our last chapter about Python dependency management talked about Python
virtual environments and how they create a safety bubble between different
Python projects in your local development environment. Docker containers
solve a similar problem but on a different layer.

While a Python virtual environment creates the isolation layer between
all Python-related things, a Docker container achieves this for the entire
software stack. The use-cases for Python virtual environments and Docker
containers are different. As a rule of thumb, virtual environments are enough
for developing things on your local machine while Docker containers are built
for running production jobs in the cloud.

To put it another way, for local development virtual environments are like
wearing sunscreen on the beach, while Docker containers are like wearing a
spacesuit – usually uncomfortable and mostly impractical.

30

What every data scientist should know about
the command line

It is now 50 years old, and we
still can't figure out what to
call it. Command line, shell,
terminal, bash, prompt, or
console? We shall refer to
it as the command line to
keep things consistent.

The article will focus on the UNIX-style (Linux & Mac) command line and
ignore the rest (like Windows's command processor and PowerShell) for
clarity. We have observed that most data scientists are on UNIX-based
systems these days.

What is it?

The command line is a text-based interface to your computer. You can think
of it kind of as "popping the hood" of an operating system. Some people
mistake it as just a relic of the past but don't be fooled. The modern command
line is rocking like never before!

Back in the day, text-based input and output were all you got (after punch
cards, that is). Like the very first cars, the first operating systems didn't even

Command line gives you sneak peek under the hood

31

have a hood to pop. Everything was in plain sight. In this environment, the so-
called REPL (read-eval-print loop) methodology was the natural way to interact
with a computer.

REPL means that you type in a command, press enter, and the command is
evaluated immediately. It is different from the edit-run-debug or edit-compile-
run-debug loops, which you commonly use for more complicated programs.

The command line generally follows the UNIX philosophy of "Make each program
do one thing well", so basic commands are very straightforward. The fundamental
premise is that you can do complex things by combining these simple programs.
The old UNIX neckbeards refer to "having a conversation with the computer."

Why would I use it?

Almost any programming language in the world is more powerful than the
command line, and most point-and-click GUIs are simpler to learn. Why would
you even bother doing anything on the command line?

The first reason is speed. Everything is at your fingertips. For telling the
computer to do simple tasks like downloading a file, renaming a bunch of
folders with a specific prefix, or performing a SQL query on a CSV file, you
really can't beat the agility of the command line. The learning curve is there,
but it is like magic once you have internalized a basic set of commands.

The second reason is agnosticism. Whatever stack, platform, or technology
you are currently using, you can interact with it from the command line. It
is like the glue between all things. It is also ubiquitous. Wherever there is a
computer, there is also a command line somewhere.

The third reason is automation. Unlike in GUI interfaces, everything done in the
command line can eventually be automated. There is zero ambiguity between the
instructions and the computer. All those repeated clicks in the GUI-based tools
that you waste your life on can be automated in a command-line environment.

The fourth reason is extensibility. Unlike GUIs, the command line is very
modular. The simple commands are perfect building blocks to create complex
functionality for myriads of use-cases, and the ecosystem is still growing
after 50 years. The command line is here to stay.

The fifth reason is that there are no other options. It is common that some of
the more obscure or bleeding-edge features of a third party service may not

32

be accessible via GUI at all and can only be used using a CLI (Command Line
Interface).

How does it work?

There are roughly four layers in how the command-line works:

Terminal = The application that grabs the keyboard input passes it to the
program being run (e.g. the shell) and renders the results back. As all modern
computers have graphical user interfaces (GUI) these days, the terminal is
a necessary GUI frontend layer between you and the rest of the text-based
stack.

Shell = A program that parses the keystrokes passed by the terminal
application and handles running commands and programs. Its job is basically
to find where the programs are, take care of things like variables, and also
provide fancy completion with the TAB key. There are different options like
Bash, Dash, Zsh, and Fish, to name a few. All with slightly different sets of
built-in commands and options.

Command = A computer program interacting with the operating system.
Common examples are commands like ls , mkdir , and rm . Some are
prebuilt into the shell, some are compiled binary programs on your disk, some
are text scripts, and some are aliases pointing to another command, but at
the end of the day, they are all just computer programs.

Operating system = The program that executes all other programs. It handles
the direct interaction with all the hardware like the CPU, hard disk, and network.

The prompt and the tilde

There is usually one thing common, though: prompt,
likely represented by the dollar sign ($). It is a visual
cue for where the status ends and where you can
start typing in your commands.

On my computer, the command line says:

juha@ubuntu:~/hel lo$

The juha is my username, ubuntu is my computer
name, and ~/hel lo is my current working directory.

The command line tends to look
slightly different for everyone.

33

And what's up with that tilde (~) character? What does it even mean that the
current directory is ~/hel lo ?

Tilde is shorthand for the home directory, a place for all your personal files.
My home directory is /home/juha , so my current working directory is

/home/juha/hel lo , which shorthands to ~/hel lo . (The convention
~username refers to someone's home directory in general; ~juha refers to
my home directory and so on.)

From now on, we will omit everything else except the dollar sign from the
prompt to keep our examples cleaner.

The anatomy of a command

Earlier, we described commands simply as computer programs interacting
with the operating system. While correct, let's be more specific.

When you type something after the prompt and press enter, the shell
program will attempt to parse and execute it. Let's say:

$ generate million dollars
generate: command not found

The shell program takes the first complete word generate and considers
that a command.

The two remaining words, mi l l ion and dol lars , are interpreted as two
separate parameters (sometimes called arguments).

Now the shell program, whose responsibility is to facilitate the execution,
goes looking for a generate command. Sometimes it is a file on a disk and
sometimes something else. We'll discuss this in detail in our next chapter.

In our example, no such command called generate is found, and we end up
with an error message (this is expected).

Let's run a command that actually works:

$ df --human-readable

Filesystem Size Used Avail Use% Mounted on
sysfs 0 0 0 - /sys

34

proc 0 0 0 - /proc
udev 16G 0 16G 0% /dev
. . .

Here we run a command " df " (short for disk free) with the " --human
-readable " option.

It is common to use "-" (dash) in front of the abbreviated option and "--"
(double-dash) for the long-form. (These conventions have evolved over time;
see this blog post for more information.)

For example, these are the same thing:

$ df -h
$ df --human-readable

You can generally also merge multiple abbreviated option after a single dash.

df -h -l -a
df -hla

Note: The formatting is ultimately up to each command to decide, so don't
assume these rules as universal.

Since some characters like space or backslash have a special meaning, it is a
good idea to wrap string parameters into quotes. For bash-like shells, there is
a difference between single (') and double-quotes ("), though. Single quotes
take everything literally, while double quotes allow the shell program to
interpret things like variables. For example:

$ testvar=13
$ echo "$testvar"
13
$ echo '$testvar'
$testvar

If you want to know all the available options, you can usually get a listing with
the --help parameter:

df --help

https://blog.liw.fi/posts/2022/05/07/unix-cli/

35

Tip: The common thing to type into the command line is a long file path. Most
shell programs offer TAB key to auto-complete paths or commands to avoid
repetitive typing. Try it out!

The different types of a command

We can split them into two
categories, file-based and virtual.

Binary and script commands
are file-based and executed
by creating a new process (an
operating system concept for
a new program). File-based
commands tend to be more
complex and heavyweight.

Builtins, functions, and aliases are virtual, and they are executed within the
existing shell process. These commands are mostly simple and lightweight.

A binary is a classic executable program file. It contains binary instructions only
understood by the operating system. You'll get gibberish if you try to open it
with a text editor. Binary files are created by compiling source code into the
executable binary file. For example, the Python interpreter command python
is a binary executable.

For binary commands, the shell program is responsible for finding the actual
binary file from the file system that matches the command name. Don't expect
the shell to go looking everywhere on your machine for a command, though.
Instead, the shell relies on an environment variable called $PATH , which is a
colon-delimited (:) list of paths to iterate over. The first match is always chosen.

To inspect your current $PATH , try this:

$ echo $PATH

If you want to figure out where the binary file for a certain command is, you
can call the which command.

$ which python
/home/juha/.pyenv/shims/python

There are five different types of commands:
binary, script, builtin, function, and alias.

36

Now that you know where to find the file, you can use the f i le utility to
figure out the general type of the file.

$ f i le /home/juha/.pyenv/shims/pip
/home/juha/.pyenv/shims/pip: Bourne-Again shel l script text
executable, ASCII text
$ f i le /usr/bin/python3.9
/usr/bin/python3.9: ELF 64-bit LSB executable, x86-64, version
1 (SYSV), dynamical ly l inked, interpreter / l ib64/ld-l inux-x86-64.
so.2, for GNU/Linux 3.2.0, str ipped

A script is a text file containing a human-readable program. Python, R, or Bash
scripts are some common examples, which you can execute as a command.

Usually we do not execute our Python scripts as commands but use the
interpreter like this:

$ python hel lo.py
Hel lo world

Here python is the command, and hel lo.py is just a parameter for it. (If
you look at what python --help says, you can see it corresponds to the
variation "file: program read from script file", which really does make sense here.)

But we can also execute hello.py as directly as a command:

$./hel lo.py
Hel lo world

For this to work, we need two things. Firstly, the first line of hel lo.py
needs to define a script interpreter using a special #! Notation.

#!/usr/bin/env python3
print("Hel lo world")

The #! notation tells the operating system which program knows how
to interpret the text in the file and has many cool nicknames like shebang,
hashbang, or my absolute favorite the hash-pling!

The second thing we need is for the file to be marked executable. You do that
with the chmod (change mode) command: chmod u+x hel lo.py will
set the eXecutable flag for the owning User.

37

A builtin is a simple command hard-coded into the shell program itself.
Commands like cd , echo , al ias , and pwd are usually builtins.

If you run the help command (which is also a builtin!), you'll get a list of all
the builtin commands.

A function is like an extra builtin defined by the user. For example:

$ hel lo() { echo 'hel lo, world'; }

Can be used as a command:

$ hel lo
hel lo, world

If you want to list all the functions currently available, you can call (in Bash-
like shells):

$ declare -F

Aliases are like macro. A shorthand or an alternative name for a more
complicated command.

For example, you want new command showerr to list recent system errors:

$ alias showerr="cat /var/log/syslog"
$ showerr
Apr 27 10:49:20 juha-ubuntu gsd-power[2484]: failed to
turn the kbd backlight off: GDBus.Error:org.freedesktop.
UPower.GeneralError: error writing brightness
. . .

Since functions and aliases are not physical files, they do not persist after
closing the terminal and are usually defined in the so-called profile file

~/.bash_profi le or the ~/.bashrc file, which are executed when a
new interactive or login shell is started. Some distributions also support a

~/.bash_al iases file (which is likely invoked from the profile file -- it's
scripts all the way down!).

If you want to get a list of all the aliases currently active for your shell, you
can just call the al ias command without any parameters.

38

Combining commands together

Pretty much anything that happens on your computer happens inside
processes. Binary and script commands always start a new process. Builtins,
functions, and aliases piggyback on the existing shell program's process.

A process is an operating system concept for running an instance of a
command (program). Each process gets an ID, its own reserved memory
space, and security privileges to do things on your system. Each process also
has a standard input (stdin), standard output (stdout), and standard
error (stderr) streams.

What are these streams? They are simply arbitrary streams of data. No encoding
is specified, which means it can be anything. Text, video, audio, morse-code,
whatever the author of the command felt appropriate. Ultimately your computer
is just a glorified data transformation machine. Thus it makes sense that every
process has an input and output, just like functions do. It also makes sense to
separate the output stream from the error stream. If your output stream is a
video, then you don't want the bytes of the text-based error messages to get
mixed with your video bytes (or, in the 1970s, when the standard error stream
was implemented after your phototypesetting was ruined by error messages
being typeset instead of being shown on the terminal).

By default, the stdout and stderr streams are piped back into your terminal,
but these streams can be redirected to files or piped to become an input
of another process. In the command line, this is done by using special
redirection operators (| , > , < , >>).

Let's start with an example. The curl command downloads an URL and
directs its standard output back into the terminal as default.

$ curl https://filesamples.com/samples/document/csv/sample1.csv
"May", 0.1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0
"Jun", 0.5, 2, 1, 1, 0, 0, 1, 1, 2, 2, 0, 1
"Jul", 0.7, 5, 1, 1, 2, 0, 1, 3, 0, 2, 2, 1
"Aug", 2.3, 6, 3, 2, 4, 4, 4, 7, 8, 2, 2, 3
"Sep", 3.5, 6, 4, 7, 4, 2, 8, 5, 2, 5, 2, 5

39

Let's say we only want the first three rows. We can do this by piping two
commands together using the piping operator (|). The standard output of
the first command (curl) is piped as the standard input of the second (

head). The standard output of the second command (head) remains
output to the terminal as a default.

$ curl https://filesamples.com/samples/document/csv/sample1.csv
| head -n 3

"May", 0.1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0

"Jun", 0.5, 2, 1, 1, 0, 0, 1, 1, 2, 2, 0, 1

"Jul", 0.7, 5, 1, 1, 2, 0, 1, 3, 0, 2, 2, 1

Usually, you want data on the disk instead of your terminal. We can achieve
this by redirecting the standard output of the last command (head) into a
file called foo.csv using the > operator.

$ curl https://filesamples.com/samples/document/csv/sample1.csv |
head -n 3 > foo.csv

Finally, a process always returns a value when it ends. When the return value
is zero (0), we interpret it as successful execution. If it returns any other
number, it means that the execution had an error and quit prematurely. For
example, any Python exception which is not caught by try/except has the
Python interpreter exit with a non-zero code.

You can check what the return value of the previously executed command
was using the $? variable.

$ curl http://fake-url
curl: (6) Could not resolve hostmm
$ echo $?
6

40

Previously we piped two commands together with streams, which means
they ran in parallel. The return value of a command is important when we
combine two commands together using the && operator. This means that
we wait for the previous command to succeed before moving on to the next.
For example:

cp /tmp/apple.png /tmp/usedA.png && cp /tmp/apple.png /tmp/usedB.
png && rm /tmp/apple.png

Here we try to copy the file /tmp/apple to two different locations and
finally delete the original file. Using the && operator means that the shell
program checks for the return value of each command and asserts that it is
zero (success) before it moves. This protects us from accidentally deleting
the file at the end.

If you're interested in writing longer shell scripts, now is a good time to take a
small detour to the land of the Bash "strict mode" to save yourself from a lot
of headache.

Manage data science projects like a boss

Often when a data scientist ventures out into
the command line, it is because they use the
CLI (Command Line Interface) tool provided
by a third party service or a cloud operator.
Common examples include downloading data
from the AWS S3, executing some code on a Spark
cluster, or building a Docker image for production.

It is not very useful to always manually memorize
and type these commands over and over again. It is not only painful but also
a bad practice from a teamwork and version control perspective. One should
always document the magic recipes.

For this purpose, we recommend using one of the classics, all the way
from 1976, the make command. It is a simple, ubiquitous, and robust
command which was originally created for compiling source code but can be
weaponized for executing and documenting arbitrary scripts.

The default way to use make is to create a text file called Makefi le into
the root directory of your project. You should always commit this file into
your version control system.

http://redsymbol.net/articles/unofficial-bash-strict-mode/
http://redsymbol.net/articles/unofficial-bash-strict-mode/

41

Let's create a very simple Makefi le with just one "target". They are called
targets due to the history with compiling source code, but you should think of
target as a task.

Makefile

hello:
 echo "Hello world!"

Now, remember we said this is a classic from 1976? Well, it's not without its
quirks. You have to be very careful to indent that echo statement with
a tab character, not any number of spaces. If you don't do that, you'll get a
"missing separator" error.

To execute our "hello" target (or task), we call:

$ make hello
echo "Hello world!"
Hello world!

Notice how make also prints out the recipes and not just the output. You can
limit the output by using the -s parameter.

$ make -s hello
Hello world!

Next, let's add something useful like downloading our training data.

Makefile

hello:
 echo "Hello world!"

get-data:
 mkdir -p .data

 curl <https://filesamples.com/samples/document/csv/sample1.csv>
 > .data/sample1.csv
 echo "Downloaded .data/sample1.csv"

Now we can download our example training data with:

$ make -s get-data
Downloaded .data/sample1.csv

42

(Aside: The more seasoned Makefile wizards among our readership would
note that get-data should really be named .data/sample1.csv to take
advantage of Makefile's shorthands and data dependencies.)

Finally, we'll look at an example of what a simple Makefi le in a data science
project could look like so we can demonstrate how to use variables with make
and get you more inspired:

Makefile
DOCKER_IMAGE := mycompany/myproject
VERSION := $(shell git describe --always --dirty --long)

default:
 echo "See readme"

init:
 pip install -r requirements.txt
 pip install -r requirements-dev.txt
 cp -u .env.template .env

build-image:
 docker build .
 -f ./Dockerfile
 -t $(DOCKER_IMAGE):$(VERSION)

push-image:
 docker push $(DOCKER_IMAGE):$(VERSION)

pin-dependencies:
 pip install -U pip-tools
 pip-compile requirements.in
 pip-compile requirements-dev.in

upgrade-dependencies:
 pip install -U pip pip-tools
 pip-compile -U requirements.in
 pip-compile -U requirements-dev.in

This example Makefi le would allow your team members to initialize their
environment after cloning the repository, pin the dependencies when they
introduce new libraries, and deploy a new docker image with a nice version tag.

If you consistently provide a nice Makefi le along with a well-written
readme in your code repositories, it will empower your colleagues to use the
command line and reproduce all your per-project magic consistently.

43

What every data scientist should know
about programming tools

There are many ways to give instructions to computers, but writing long
text-based recipes is one of the most challenging and versatile ways to
command our silicon-based colleagues. We call this approach programming,
and most data scientists accept that it is a part of their profession, but
unfortunately, many underestimate the importance of tooling for it.

The minimum tooling is a simple text editor and the ability to execute your
programs. Most operating systems come with an editor (like Notepad in
Windows) and the ability to run code (Mac & Linux ship with a c++ compiler).
Programming in this minimalistic way went out of fashion in the 90s.

Notebooks (like Jupyter) are often the first contact with programming for any
data scientist. There is absolutely nothing wrong with notebooks, and they
are fantastic for many use-cases, but they are not the only option for writing
programs. Too many get stuck in the vanilla notebook and do not realize what
they are missing out on.

There are many tools for writing, refactoring, navigating, debugging,
analyzing, and profiling source code. Most tools are stitched together into a
single program called IDE (Integrated Development Environment), but some
remain as separate stand-alone programs. Most modern IDEs (like VSCode
and PyCharm) also have a vibrant plugin ecosystem to extend the built-in
capabilities, and the same can be said about the notebooks too.

Code Completion

The programmer needed to
memorize all the syntax and
methods by heart back in the day.
The simple text editor wouldn't offer
any suggestions, and the internet
didn't really exist yet. If you were lucky,
you had some programming books
on your shelves. These days the best
IDEs type the code for you. You start a
"sentence," and the tooling finishes it for
you. This is called code completion.

44

The funny thing is that I always thought code completion is something that
only IDEs do and Jupyter doesn't, but it does! Start writing some code in your
notebook and press the TAB key. It's magic.

Code completion in Jupyter notebook

Code completion is a bit smoother in IDEs, though. There is no need to keep
firing the TAB key, and the popups offer more context like method signatures,
documentation and tips.

Code completion in PyCharm

The latest game-changer in code completion is GitHub CoPilot. It is a plugin
that doesn't just finish your "sentences" but offers the entire "chapters" based
on your typing. Future programmers will use more and more AI-assisted code
editors like GitHub CoPilot to write code, just like I'm using AI-assisted natural
language tools like Grammarly to write this article. This progression is inevitable.

45

Code completion with GitHub CoPilot

The bottom line is that if you have never used code completion before, you
should start doing that today. It will change your life!

Refactoring

Imagine writing some code and having
a variable called table . You use the
variable all over the place and later
realize that you should've named it

customers_table instead, as the
original name is too vague.

In a Jupyter notebook, you could do a
“find and replace” operation, but it only
covers a single notebook and can be slightly dangerous. For example, your
code will break if you have used the word table in any other context.

Modern IDE is context-aware and truly understands code. It knows what a
method is, and the rename operation isn't just a dummy string operation but
safely and robustly renames all usages across the entire codebase.

46

Renaming a variable in PyCharm

Renaming a method or a variable is a classic, but there are dozens of useful
little tools out there like adding imports, extracting methods, auto-updating
class initializers, and commenting a large chunk of code to name a few.

Extracting a method in PyCharm

If you want more inspiration, check out the documentation for PyCharm & VSCode
https://www.jetbrains.com/help/pycharm/refactoring-source-code.html
https://code.visualstudio.com/docs/editor/refactoring

https://www.jetbrains.com/help/pycharm/refactoring-source-code.html
https://code.visualstudio.com/docs/editor/refactoring

47

Navigation

Code navigation usually happens when you
are figuring things out. You ask questions like,
"What does this method do?" and "Where is this
variable introduced again?"

One might think that while editing a single notebook
with only 50 lines of code, there isn't much to
navigate around, but that is a fallacy. You are always
using 3rd party libs like pandas or matplotlib, which
have 1000x more code than your notebook.

The great thing about using an IDE is that you can dive into the source code
of 3rd party package. Want to know what filter() method in Pandas actually
does under the hood? Just CTRL+click it and see the implementation
yourself! The source code for Pandas is not some next-level voodoo. It is
vanilla Python code written by a flesh-and-blood programmer just like you.
Don’t be afraid to dive in!

Diving into the source code of Pandas filter()

48

Navigation tools are great at putting everything at your fingertips. Almost
every IDE has a generic search tool, which is like having a google search
engine for your project. “What was the name of that method again?” and “I
need to edit the Dockerfile now” are just hotkey away from getting solved.

Learning all the hotkeys for navigation feels like a burden at first, but jumping
around in code becomes second nature once you have internalized them.
Navigation is one aspect where the notebooks are unfortunately quite lacking,
perhaps due to being designed for a single piece of code and not a large codebase.

Debugger

Let's face it, every piece of code out there has
bugs, and when you are writing something
new, your program is broken pretty
much all of the time. Debugging
is the act of finding out why the
darned thing doesn't do what
you expect. Someone once said
that debugging is like being the
detective in a crime movie where
you are also the murderer.

The easy and obvious bugs are squashed just by staring at the code. There
is nothing wrong with that. If that doesn't work, the following approach is
running the program with some extra logging, which is fine too. But once we
get into the twilight zone of the more bizarre bugs, where nothing seems to
make sense, you want to get yourself a debugger.

A debugger is a tool that lets you run the program and inspect its execution
like you had one of those 10000 frames per second stop-motion cameras.
You get to run the program step-by-step, see the value of every variable, and
follow the execution down to the rabbit hole of method calls as deep as you
need to go. You no longer need to guess what happens. The entire state of
the program is at your fingertips.

49

VSCode debugger inspecting a running program

As data scientists, we often run our production code in the cloud, and the
most bizarre bugs tend to thrive in these situations. When your production
environment (cloud) slightly deviates from your development environment
(laptop), you are in for some painful moments. It is where debuggers shine, as
they let you debug remotely and reliably compare the two environments.

Python ships with a built-in command-line debugger pdb and Jupyter lets
you use it with the %debug magics, but we highly recommend using visual
debuggers in the IDEs like PyCharm and VSCode. Jupyterlab also has a visual
debugger available as an extension (https://github.com/jupyterlab/debugger).

https://github.com/jupyterlab/debugger

50

JupyterLab debugger extension

A debugger might be an overkill for simple bugs, but the next time you
find yourself staring at the code for more than an hour, you might want to
consider trying out a debugger. You’d be surprised how much it changes
your perspective.

Profiler

The last dish on today's menu is
a profiler. Sometimes you face a
situation where your code isn't meeting
the performance requirements. Perhaps
the batch preprocessing step takes
five hours, and it needs to happen in 30
minutes, or maybe you can only use two
gigabytes of memory, and you are currently hoarding eight.

Often we start guessing blindly where the bottleneck is in our code. We might
even manually write some ad-hoc logging to time our method calls. Human
intuition can be pretty bad at this. We often end up micro-optimizing things
that make no difference at all. It is better than nothing, but to be completely
honest, you need a profiler.

51

A profiler is a tool that times everything and can also measure memory
usage in great detail. You run your program using a profiler, and you know
exactly where the processing power is spent and who hoarded the precious
megabytes. Like the debugger in the previous chapter, you no longer need to
guess. All the information is at your fingertips.

A flame graph visualizing the time spent between different parts of the program

In a typical data science crime scene, the murderer is a 3rd party library like
Pandas. It is not that there is anything inherently wrong with it, but they are
optimized for ease of use instead of making sure you get the best performance.
Complicated things are hidden from you by design. The end result is code that
works but is very slow. Profilers are an excellent tool for exposing this when
needed. It is not uncommon to get a 100x speed-up by switching one Pandas
method to another!

The best profilers are standalone programs or IDE plugins, but all is not lost
in the notebook space. Jupyter notebook has built-in magic commands like

%time and %prun which can tell you a lot, but are a bit lacking in the
user experience when compared to their visual counterparts.

52

Profiling a cell in Jupyter notebook with %%prun

While debugging can be meaningful without a debugger, optimizing should
never be done without a profiler. We are so bad at guessing what makes our
programs slow that having a profiler around is the only way to keep us honest
while optimizing the performance.

53

Conclusion

A professional lumberjack doesn’t cut down a forest with a rusty old handsaw,
he uses a chainsaw because it gets the job done. In this regard, programming
is pretty much like any other job. Programming in a vanilla notebook might
be fine for small things, but engineering for production without proper tooling
is not recommended, and the gap is widening every day in the wake of new
AI-assisted programming tools. I hope this article has inspired data scientists
to explore what is out there.

54

Final takeaways

MLOps is the term used for operating a machine learning project in
production. It really comes down to running reproducible machine learning
workloads with confidence. This ebook teaches the fundamentals of Git,
Docker, Python dependencies, and Bash, all requirements for getting your
MLOps right to do pioneering machine learning.

There is more to MLOps than these, though. The chapters in this book are just
building blocks. It is not enough to build robust Docker images, operate clean
git repositories, and master the command line. All those images, repositories,
and scripts need to come together. Something needs to glue these things to
create a meaningful whole.

The glue could be well-written documentation, a central code repository, a
great cloud provider, or an MLOps platform. We actually think it is all of these.
As soon as you have more than three models in production or more than five
data scientists on payroll, the engineering fundamentals are not enough.
You'll need something to keep it all together. The choice is yours.

	Contents
	Foreword
	Git
	Python dependencies
	Docker
	What every data scientist should know about the command line
	What every data scientist should know about programming tools
	Final takeaways

