
Practical

HOW TO GET READY FOR
PRODUCTION MODELS

MLOPS

With chapters from

2Table of Contents

Contents

Why MLOps Matters? (Foreword)	 3

People of Machine Learning	 5

How Is Machine Learning Different from Traditional Software?	 8

The MLOps Workflow	 10

What Is the Point of MLOps?	 10

Risk in Machine Learning	 11

Time to Market	 15

The MLOps Workflow Enforces Best Practices	 18

How to Quantify Success in an MLOps Project?	 20

Speak the Same Language	 22

Use Every Project as an Opportunity to Educate Your Organization about
Machine Learning	 22

Define Clear Shared Objective and Metrics	22

Real-World Example - The Story of Two Companies	 25

Company 1	 25

Company 2	 26

Learnings	26

The MLOps Toolchain	 28

Data Platforms	 28

Model and Data Exploration	 36

Metrics and Model Optimization	 39

Productionalization - End-to-End Pipelines	 43

Productionalization - Feature Stores	 47

Testing	 51

Deployment and Inference	 54

Conclusion	58

About the Authors	 60

3Why MLOps Matters?

50%

40%

30%

20%

10%

0%

Collect more
data

Figure out how
data can be

used

Make data more
accessible

Learn machine
learning

technologies

Prove potential
of machine

learning

Develop models
for production

use

Deploy models
to production

Optimize
models

Automate
retraining
model(s)

Monitor
model(s) in
production

Source: State of ML 2020, Valohai
330 respondents

Why MLOps Matters? (Foreword)

Traditionally, machine learning has been approached from

a perspective of individual scientific experiments which are

predominantly carried out in isolation by data scientists. However,

as machine learning models become part of real-world solutions

and critical to business, we will have to shift our perspective, not

to depreciate scientific principles but to make them more easily

accessible, reproducible and collaborative.

In May 2020, we surveyed 330 data scientists, machine learning

engineers and managers in a broad range of companies to ask what

they were focused on for the next 3 months and what major obstacles

they were faced with. Although 20% of respondents said they are still

focusing more on the experimentation and learning phase, half of the

respondents said that they were focused on developing models for

production use and over 40% said they would be deploying models for

production.

4Why MLOps Matters?

Automating retraining of models and monitoring models in production

were still not relevant for most respondents which speaks to machine

learning in production being relatively nascent for most. However,

the steadily rising interest in MLOps based on search volume and

news articles speak to these aspects becoming more and more

relevant. Production models raise new challenges, not just for data

scientists but the extended team of engineers, product managers

and compliance officers, which will need to be solved collaboratively.

In most real-world applications, the underlying data changes

constantly and thus models need to be retrained or whole pipelines

even need to be rebuilt to tackle feature drift. Business and regulatory

requirements can also change rapidly requiring a more frequent

release cycle. This is where MLOps comes in to combine operational

know-how with machine learning and data science knowledge.

In machine learning, 2020 is the year of production models and we

predict that 2021 will be the year of MLOps. We hope that you enjoy

our eBook on MLOps and get new, fresh ideas for your use case.

5People of Machine Learning

People of Machine Learning

The size and scope of real-world machine learning projects has surely

surprised most if not all of us. What seems like a straightforward task

of gathering some data, training a model and then using it for profit

ends up becoming a deep rabbit hole that spans from business and

operations to IT. A single project covers topics such as data storage,

data security and access control, resource management, high

availability, integrations to existing business applications, testing,

retraining and so much more. Many machine learning projects end up

being some of the biggest multidisciplinary and cross-organizational

development efforts that the companies have ever faced.

To understand the multidisciplinary nature of ML projects, we start

by looking at the roles involved in them. These roles come from

our unique collective vantage point of seeing around 500 different

organizations from startups to Fortune 500 over the last 4 years.

While the list of roles below is not entirely exhaustive, it gives an

overview of the people involved.

Remember that these roles are not necessarily one per person but

rather a single person can - and in smaller organizations often has to

- cover multiple roles. For example, many data scientists also handle

ML Engineering tasks, and sometimes DevOps and IT are synonymous.

The rule of thumb is the larger the organization, the more specialized

and siloed individuals are which requires all the more collaboration.

Data Scientist

Data scientists are tasked with finding data-driven solutions to

business problems. Data scientists tend to be highly educated with

a master’s degree or higher in mathematics and statistics, computer

science or engineering. Their strengths lie in data wrangling,

statistical analysis, data visualization and applying machine learning.

Generally, they are deployed first to analyze existing data and to find

patterns that could be used to solve underlying business problems.

6People of Machine Learning

For example, they might be looking at user data to find meaningful

user segments and building models that can classify those users in

segments in order to differentiate the end-user experience and drive

more engagement. While the primary purpose of data science is to

explore data and build models, often a large portion of time is spent

manipulating data to suit the use case.

Data Engineer

Data engineers are responsible for the infrastructure that ensures

data is stored and available for data scientists. They build the systems

that ingest raw data from various sources and store it in a centralized

data lake. Data engineers often also build other data warehouses

that derive data from the data lake but transform it so that it is more

useful for the end-user; for example, image data might be resized and

reformatted so that data scientists can focus on data analysis rather

than data manipulation.

Machine Learning Engineer

Machine learning engineer is a rather nascent role that is becoming

increasingly relevant as companies push to get real-world value

from machine learning. While data scientists explore and prove a

theoretical concept, ML engineers take those concepts and build them

into a production-scale system. As the title implies, ML engineers

understand the theoretical side of machine learning but are more

involved with paradigms found in engineering such as continuous

integration (CI) and continuous delivery (CD). They tackle automating

and scaling model training, testing models before deployment and

deploying and monitoring models in production. Often they will

rewrite or restructure code written by data scientists; for example,

turning notebooks into scripts.

DevOps Engineer

DevOps engineers combine the domains of software engineering

and cloud infrastructure. In traditional software projects, DevOps

handles automation around testing and releasing new code, and

7People of Machine Learning

often also manages testing and production environments. In machine

learning projects, DevOps can be the connection between the ML

model and the end-user application; for example, releasing a new

recommendation engine to a web application. Scalability, stability and

responsiveness of the end-user application are often at the forefront

of their mind and they’ll be involved in ensuring machine learning

models don’t degrade these elements.

IT

IT operations can be found in most larger organizations. They are

generally tasked with resource management, access control and

information security. While often seen as red tape, IT operations and

the processes involved can help a project run more smoothly, whether

it’s through requesting that computing resources be provisioned or

ensuring that outside vendors are approved.

Business Owner

There isn’t a specific title for a business owner in a machine learning

environment but it’s a key role to ensure success. Business owners

have the deepest understanding of the end-user and use case, and

guide the team to producing ML systems that are not just accurate

and well-engineered but also valuable. They’ll help define what kind

of predictions are useful and help understanding of where risks lie

from an operational and regulatory perspective.

Manager

The management role in a team working with machine learning

tends to be a little unclear as these teams tend to be relatively new.

The key aspects to consider are that machine learning projects are

deceptively complex and multidisciplinary. All the required resources

to execute a project are often not in a single team and a manager

must secure these from different parts of the organization. Another

difficult task for a manager is to understand and communicate the

ROI of the team’s work as costs and benefits are likely not directly

linked with the team.

8How Is Machine Learning Different from Traditional Software?

How Is Machine Learning Different
from Traditional Software?

We already established that the cross-domain nature of ML causes

a new level of discipline in organizations but that’s only part of the

picture. There is an additional dimension that differentiates ML

and classical software — data. It might sound self explanatory and

simple but the addition of data, usually big data, brings entirely new

challenges to the development process.

Code

Code
v1

CodeSoftware

Software
Code

v1
ML Model

Data
v1

Code
v2

Software
Code

v2

Code
v1

ML Model

ML Model

Code
v2

Date
v2

ML Model

Data
v1

Data
v2

While software can generally be developed locally with almost instant

feedback on how a code change affects the end-result; in machine

learning, to see the effects of a code change requires retraining

a model. When working with models that are trained with large

datasets, this poses huge infrastructure challenges as either you will

be waiting for a long, long time or will need to use remote computing.

Just imagine the difference between an application developer just

saving a code change and pressing refresh in their browser, and

a data scientist saving a similar code change and then spinning up

a cluster of GPUs, deploying code, transferring data and training a

model before seeing any results.

However, it’s not only how the introduction of data changes how code

works in the development process but also that data is another aspect

that can change. In classical software development, a version of the

code produces a version of the software, while in machine learning,

a version of the code and a version of the data together produce a

version of the ML model.

9How Is Machine Learning Different from Traditional Software?

Code

Code
v1

CodeSoftware

Software
Code

v1
ML Model

Data
v1

Code
v2

Software
Code

v2

Code
v1

ML Model

ML Model

Code
v2

Date
v2

ML Model

Data
v1

Data
v2

Data as a new variable in the development process increases

complexity drastically, as to reproduce results you need to be able to

reproduce the data that you used. While you might not be producing

every possible variant of the model, the components must be

versioned to ensure reproducibility. The matter of versioning both

data and code becomes increasingly complex when you start thinking

about whole machine learning systems which have steps for data

preparation, augmentation and generation.

10The MLOps Workflow

The MLOps Workflow

What Is the Point of MLOps?

You might have downloaded this book because you intuitively know

that MLOps is essential. This intuition arguably comes from the

pursuit of doing things the right way and feeling the pain of constant

technical struggle in one’s daily work.

However, intuition alone can be hard to argue with when talking to

teammates looking for approval for an investment – of time or money.

This chapter solidifies the idea of MLOps to help understand why it is

worth focusing on and how to justify this. The chapter will also help

assess what areas to focus on, and the following chapters will dive

deeper into concrete ways to measure and show the ROI.

When we look at how the current literature describes a model

lifecycle, we often see a picture like this:

However, in reality, most organizations today still operate in a cycle

where hand-overs between model development and operations are –

simply put – messy and manual.

As fun as development in a vacuum is (we all have done it), the reality

is that only a model running in production can bring value. Models

have zero ROI until they can be used. Therefore, time to market should

be the number one metric to look at and optimize for any ML project.

Design
Model

Development
Operations

11The MLOps Workflow

The goal of MLOps is to reduce technical friction
to get the model from an idea into production in
the shortest possible time to market with as little
risk as possible.

Let’s break down the statement. It contains two parts, reducing the

time to market and reducing the risk involved. These goals help data

scientists and business stakeholders to speak the same language and

frame MLOps as a business-driven necessity. Albeit MLOps will help

automate manual steps and improve the quality of code, but they are

not the underlying goals the whole organization will rally around.

Next, we will talk about risk and time to market. The area of risk

assessment is a more straightforward concept, so let’s start there.

Risk in Machine Learning

The goal of MLOps is to reduce technical friction to get the model

from an idea into production in the shortest possible time to market

with as little risk as possible.

We have identified three primary types of risks the MLOps workflow

tackles:

1.	 Loss of knowledge

2.	 Failures in production

3.	 Regulatory and ethical

Design

10% Model
Development

90% Glue
Coding

Complex &
unstructured

handover

Operations

Time to Market

12The MLOps Workflow

There is plenty of industry, implementation, and even company-

specific detail involved in each of these main topics. However, the

most significant risks that machine learning in production introduces

fall under one of these categories.

Keep in mind that we are skipping basic IT risk that is already well

documented and covered elsewhere but is not exclusive to machine

learning in production; for example, data security. It’s clear that no-

one should be able to steal data from your database, but that is true

for all databases – not just ones used for machine learning.

Loss of Knowledge

No! Only I know
how to train our

production
models!

Bus factor

The bus factor is a common term in software engineering describing

the risk of a key contributor disappearing unexpectedly from a project

– because they get hit by a bus. While it is a well-documented problem

for classical software development, machine learning magnifies the

bus factor significantly.

In ML, in addition to code that is often somewhat self-documenting,

there is data. A single data set can contain vast amounts of hidden

information about how it’s been collected and then how features are

extracted. There may be many versions of notebooks or scripts that

produce a single data set.

Loss of knowledge can happen in many different ways. Most obviously

by a data scientist leaving the company, and most larger teams have

already faced this. But it can also occur without personnel changes.

When you work on multiple projects over a more extended period, you

13The MLOps Workflow

tend to forget details about your own work too. It can be challenging

to return to a six-month-old project and retrain a model without

breaking things. Many readers may have existing models running that

they dread getting back to for fear of breaking something.

For traditional software development, reproducibility is mostly taken

care of by proven version control tools like Git. To achieve proper

version control and reproducibility for ML, you will need a bit more on

top of that.

In ML, a model is a combination of code, data, parameters, and the

training environment. To pick up where someone else (or yourself six

months ago) left off with a model, you’ll need much more than just a

Git repository.

You need to know what data the code is using and how that data came

to be. There are often multiple scripts bringing together different

data sources and doing feature aggregation to build the dataset you

need. Putting together the puzzle of several scripts and data sources

someone else made leaving behind zero documentation can often be

more complicated than just starting from scratch.

To tackle this, we recommend a version control system that can track

your whole pipeline from raw data to the model, including your code,

environment, configurations, and parameters.

Failures in Production

The next category of risk is failures in production. Everyone who has

worked in software development knows that shipping broken code

Version control for machine learning experiments

OutputExecutionInput

Training code

Parameters

Dataset

Used hardware

Environment

Experiment cost

Model

Logs

Results

Statistics

14The MLOps Workflow

to production is a prevalent failure point for systems. Teams spend

extensive amounts of time building CI/CD pipelines so that developers

can be confident that their latest update does not break anything in

production.

The same thing applies to ML. From basic syntax errors to changes in

the data stream or unexpected model performance.

In a perfect world, not only does your MLOps tooling support various

methods of testing your code and data throughout the pipeline, but

you’ve also adopted a practice to start codifying these tests, starting

from the design phase of an ML project.

We will cover different parts of the ML workflow and related testing in

later chapters of the book, but here are some general pointers to look

out for.

1.	 Ensure that the data used to train a model looks like you expected

it to. There may be changes upstream, for example, how the data

is collected or stored.

2.	 Ensure that the model works not only in training but in a real-world

environment. Overfitting is a real risk that should be addressed by

your pipeline and process.

3.	 Ensure that the infrastructure works consistently. Your ML pipeline

should produce identical results if the inputs stay the same, and

you should always be able to roll back.

Regulatory and Ethical

Machine learning algorithms come under severe regulatory and

ethical scrutiny due to not being explicitly defined by a person.

When realized, consequences can be financial but maybe even more

prevalent is the loss of trust and reputation.

Therefore a data scientist might be looking at frequent governance

audits, making many people nervous. Enforcing MLOps best

15The MLOps Workflow

practices makes reproducibility a priority, and introduces version

control for every component of a machine learning model. Think of

this as bookkeeping, and when books are in order, there is nothing

to worry about. Most importantly, if a prediction a production model

has served comes into question, it can always be traced back to how

the model was trained.

Most MLOps tooling will introduce version control to your workflow,

but that’s only half the battle in minimizing regulatory risk. The

second half is ensuring that production models are unbiased, and that

is generally much trickier as tooling can only provide a framework,

but subject matter expertise is required to enforce the right rules.

A prejudiced model likely won’t fail from a technical perspective, but

it might from a regulatory perspective. Therefore building on the

technical tests by including tests that combat bias and other ethical

concerns need to be considered in an ML pipeline These concerns

vary wildly depending on the application; for example, a healthcare

application will have very different ethical concerns to a financial

application.

While MLOps can’t fix model biases, it comes with the notion that

these concerns should be addressed by codifying tests for them into

a machine learning pipeline. Checkpoints and safeguards for how the

data used for training should look and what the expected predictions

should be will make governance audits much less intimidating. All of

the production models will be produced in compliance with stable

and reliable rules.

Time to Market

It’s hard to beat an ad-hoc workflow on speed to market when first

developing a machine learning model. For many data scientists and

engineers, that is the reason they are hesitant to adopt rigor into their

process. However, machine learning in production is rarely about a

single version of a single model getting into production but rather a

long-term commitment to building machine learning capabilities that

16The MLOps Workflow

are continuously evolving.

In most cases, you have a lot of dimensionality in model building.

First of all, models rarely work over long periods and tend to require

retraining somewhat regularly. Secondly, there are often several other

dimensions to think about. It is common for models to be, for instance,

retrained per customer based on their specific data or by geography,

etc. The same model architecture can be running in production as

multiple versions of multiple datasets are being re-trained periodically

over time. This quickly results in exponential retraining, and ad-hoc

workflows will quickly result in chaos, customer dissatisfaction, and

poor results. To get a truly scalable business model around ML usually

requires that you step back and think of your product in terms of the

pipeline instead of a single instance of a trained model. Here’s where

the most successful companies in ML are today.

Model

Data Source 1

Time 2 Data Source 2

Data Source 3

Customer 1

Data Source 1

Data Source 2

Data Source 3

Customer 2

Time 1 Time 3

Time 2Time 1 Time 3

Time 2Time 1 Time 3 Time 2Time 1 Time 3

Time 2Time 1 Time 3

Time 2Time 1 Time 3

18 Trained Models

17The MLOps Workflow

Broadly speaking, there are two ways that MLOps helps accelerate

the time to market of machine learning:

1.	 It creates a shared language among the extended team.

2.	 It automates manual tasks.

Shared Language

We have seen a drastic uptake in software development delivery speed

and rate over the years. Modern tooling and shared work methods (CI/

CD, version control, microservices) have enabled companies to scale

their throughput in software development exponentially.

A shared language enables new team members to hit the ground

running when you need to accelerate your development. There is very

little to suggest that the same requirements for exponential delivery

growth would not hold for machine learning too.

Secondly, as discussed earlier, MLOps revolves around turning the

process of creating a model into a machine learning pipeline. To

achieve this, teams have to codify and componentize their work.

While requiring extra effort compared to a single notebook and some

manual actions, splitting work into components allows work to scale

in a completely different way. This is very similar to what micro

services have accomplished in larger development projects.

A single data scientist doesn’t need to create the whole model, but

rather a team can work on separate pieces such as data preprocessing,

model training, and testing. As the complexity of model creation

increases, so do the benefits of working around a shared pipeline.

Also, a pipeline consisting of various code pieces is inherently self-

documenting – to some extent – and can be more easily handed to

the next person than manual actions.

Automation

DevOps has allowed software developers to move from a monthly

18The MLOps Workflow

or quarterly release cycle to a daily or weekly cycle. Despite the

complexities we’ve explained above with machine learning containing

more variables than just code, we should still ensure optimal progress.

Building a CI/CD pipeline for machine learning is more challenging

than for traditional software, but the same benefits apply. Automation

of collecting data, training, and evaluating models allows the most

scarce resources, i.e. data scientists, to focus their efforts on further

development. These pipelines are also not throw-away as you can re-

use parts when developing a model for a different purpose.

Again the importance varies by application as the benefit of a quicker

release cycle is not the same across different use cases. However, in

the most extreme cases, your model needs to be updated all the time

to keep up with the pace at which the underlying data is changing.

This is one reason why some trailblazing companies such as Facebook

and Uber had built their own MLOps infrastructure before the term

was even coined.

The MLOps Workflow Enforces Best Practices

MLOps ties model development and operations together into a

continuous loop through a set of best practices. These best practices

can be enforced in many ways, most frequently through a shared

platform. To quickly summarize, we identified four best practices that

will help you reduce technical friction to get the model from an idea

Design
Model

Development
Operations

Version Control
Pipelines
Testing

Automation

Time to Market

19The MLOps Workflow

into production in the shortest possible time to market, with as little

risk as possible.

•	 Version control everything, including models, code, data,

parameters, and environment. Enable anyone to trace how a model

was produced.

•	 Componentize the steps of the model creation process and build

them into a pipeline. A single notebook is not a pipeline.

•	 Codify testing. With checkpoints and safeguards in place, there is

a standard that models have to adhere to.

•	 Automate work to increase how much time can be spent on future

development.

20How to Quantify Success in an MLOps Project?

How to Quantify Success in an
MLOps Project?

Quantifying success is not just about the success of the business

outcome. In this stage of MLOps maturity, it’s also about the success

of the process, including multi-disciplinary collaboration and

documentation of learning.

“Only a model that is running in production can
bring value.”

As we move from projects that experiment with machine learning

to projects that are aimed to bring real business value in production

systems, we grow the complexity of the project. With it, the

uncertainty of success increases. Here are three steps to get started:

1.	 Define your objective and clear, concrete, and measurable metrics

with all the relevant stakeholders

•	 Ensure everyone understands the “why” behind the project

and the expected benefits it will bring, and educate everyone

on the basics of how the ML project will be evaluated. Everyone

should know the basics of how a model’s accuracy can be

measured and what is over-/under-fitting.

•	 Document and share how the work is currently done and

benchmarked within the team and what it will take to replace

the current way of working.

•	 Uncover assumptions that different team members have

by hosting a session to discover pre-conceptions about the

problem and come up with possible solutions. Assumptions

could be related to, for example, what data sources should be

used, how the data should be processed, or how the model

should be published. Try to uncover these assumptions and

scope out small experiments to test the hypotheses out, before

taking them as facts.

21How to Quantify Success in an MLOps Project?

2.	 Measure the success of different stages of the project - not just

the end outcome

•	 It will be hard to estimate the total time it will take to deliver on

your MLOps project as a whole, and often it’s hard to justify the

costs of a project that might take 6 or 12 months before we can

determine the success of it.

•	 Make sure you split your project into smaller pieces to validate

your assumptions, track your progress, and gather feedback.

The age-old “Push to ‘production’ often and iterate with

feedback” applies here as well. We’re not saying to skip long-

term engagement, but instead that you should show progress,

for example, every six weeks or so.

•	 As you go through different stages of the project, make sure

you reflect on your progress and whether you’re heading in the

right direction to solve the original issue. Don’t be afraid to go

back to defining the problem. Document the lessons you’ve

learned and place them in an internal Wiki for other teams

to learn from. These lessons might be about internal data

access policy, internal processes that you didn’t identify in the

beginning, or limitations of your infrastructure.

3.	 Have a multi-disciplinary team with clear roles and responsibilities

•	 As part of your success metrics, you should measure how well

your team is working together. Having a multi-disciplinary

virtual team for the MLOps project will allow you to effectively

tackle surprising blockers that will arise from different parts of

your organization.

•	 Make sure everyone understands each other’s roles and

responsibilities in this project. Having this clarity will help the

team collaborate and move forward - no one is the “red tape”

on purpose.

•	 Involve IT early on - they’ve been around for a while and have a

mature infrastructure that you can rely on.

•	 IT will want your model to be automated (e.g. automated

22How to Quantify Success in an MLOps Project?

pre-processing, training, build, and deployment)

•	 IT is usually well versed around data compliance and access.

Speak the Same Language

A data scientist’s workflow might consist of pulling data from an

internal database, exploring with that data, developing a model, and

saving it to cloud storage from where others can leverage it. The

model’s success criteria might primarily consist of model evaluation

metrics (e.g., accuracy, precision, recall) based on the business

owner’s initial specification.

Taking this into production most likely won’t happen by copying the

model files over to the production server. In most organizations, the

path to production will be managed by the IT (or Ops) department,

which has been around for a while and has a mature infrastructure

with established practices. They will assume that you can automate

most (if not all) of your ML pipeline steps, from re-training the model

with new data, to comparing it to existing models, and publishing it to

production.

Use Every Project as an Opportunity to Educate
Your Organization about Machine Learning

Whatever your preference is: company-wide meetings, town halls, or

lean coffees, make sure you share learning from your machine learning

projects across the organization. These can be either high-level

topics or nitty-gritty details on how your organization teams need to

collaborate to enable effective collaboration in MLOps projects.

MLOps projects will continue to require contributions from a wider

variety of professionals in your organization. Don’t wait until the last

minute to educate your staff on the MLOps process.

Define Clear Shared Objective and Metrics

After you’ve uncovered assumptions, make sure you write down and

23How to Quantify Success in an MLOps Project?

Assumptions

Why does this project exist?
What triggered this project to be started
as a machine learning project? What is the
expectation in business?

How is performance measured today?
What are we benchmarking against? Is our
goal to improve an existing process, or
augment or automate a manual process?

How will the deployed model be
consumed?
Is the model going to be publicly
accessible as an HTTP endpoint? Or is
access going to be limited and the model
consumed only by internal services?

Who owns the data?
Where is the data stored, and how will
it be accessed? How often is the data
updated?

Success criteria

Each organization and each
project will have it’s own
custom metrics.

You might focus on improving
existing processes, or
augmenting a manual process, or
fully automating it.

Whatever you’re doing, make
sure you’ve listed the outcomes
(not outputs) your virtual team
should track and what numbers
should be reached.

When defining the metrics for your
success criteria, think about:

•	 What is the key metric that will
determine if the model can be
taken to production?

•	 How will the model be taken to
production?

•	 How often will the model need to
be updated?

•	 Model metrics (e.g. accuracy,
precision, recall)

•	 Cost to maintain and update the
model (and pipeline)

•	 Ethical considerations

share the project’s obvvjective and the individual metrics used to

track its success within the virtual team.

24How to Quantify Success in an MLOps Project?

Success criteria

What’s the minimum viable
product?
Define the bare minimum that
will be needed to test the model.
This will help you split the
project into smaller pieces and
“get to a number” faster.

•	 Model accuracy x to be able to
test in a sandboxed environment

•	 Manually train, build and deploy
the pipeline.

MLOps metrics
Here you’ll find some additional
metrics you might want to
consider for your MLOps project.

•	 Model update frequency met (and
able to identify stale models)

•	 Time to re-train and deploy a new
model and push to production

•	 Performance of model endpoint
for online predictions (e.g.
response time in ms)

•	 # of calls / % of failed calls to the
model endpoint

•	 Collaboration between the
multi-disciplinary team (e.g. data
scientists, engineers, IT-Ops,
legal, business)

•	 Attendance of key stakeholders
to regular project updates (for
example, every six weeks)

•	 Infrastructure scales to the
machine learning teams without
manual work from IT.

25Real-World Example - The Story of Two Companies

Real-World Example - The Story of
Two Companies

The examples presented are fictional, but they illustrate patterns that

we’ve seen repeated over and over in the past five years.

Company 1

Collect data Train model Deploy model

Search for pre-
vious source

files

Switch careers

Collect data
Try to train

model

Search for pre-
vious source

files
Deploy modelCollect data Train model

Figure out how
to train model
on cloud GPU

Deploy modelTrain model

Figure out how
to deploy to a
scalable clus-

ter

Company 1 jumps right into the nitty-gritty and starts gathering and

analyzing data. Their lead data scientist develops a model in Jupyter

notebook on their laptop. The model is subsequently deployed to

production by a DevOps engineer from another team. From idea to

production, the delivery time is blazingly fast.

But trouble starts as time passes; user feedback shows that the

predictions the model produces are getting worse. Perhaps the

underlying data has changed, and the model needs to be retrained.

However, the first time around was poorly documented and done

mostly on a single computer. It’s hard to reproduce all the steps that

it took to train the model – but it gets done.

26Real-World Example - The Story of Two Companies

The company runs through the same firefighting exercise multiple

times with different variations. The lead data scientist has left the

company, and much of the work on their computer was lost. The model

training became too slow to finish on a local machine, and DevOps

people had to jump in to solve how to train the model on cloud GPU

machines.

Finally, the company decides to put in place tooling to automate

retraining and deployment, and at this point, everything is rebuilt.

Company 2

Select tooling Build pipeline Deploy modelEvaluate modelCollect data Train model

Automate

Company 2 acknowledges that machine learning models will be core

assets going forward and decides to adopt ML focused tooling before

going past the first successful proof-of-concept. The team spends a

month upfront in selecting technologies, replacing manual steps (like

data collection) with scripts, and building an end-to-end pipeline.

While Company 2 is slower to initial delivery, the benefits start to

compound quickly. Everything is automatically reproducible, and

data scientists can concentrate on further development rather than

firefighting.

Learnings

These two stories illustrate why we don’t recommend considering ML

workflow as an afterthought. It is a fallacy to think, “We just aren’t

there yet.” The right time to consider tooling and workflow is when

the first data scientist is hired, not when the first model goes to

production or the prediction serving breaks for the nth time.

27Real-World Example - The Story of Two Companies

Building up an ML workflow does require a strategic commitment and

investment from the company. Still, we don’t think a management

team can afford not to support data scientists with forethought in

the current landscape. Machine learning expertise is in high demand

and comes with a hefty price tag, and it would be irresponsible to

waste any of it.

28The MLOps Toolchain

The MLOps Toolchain

In this chapter, we’ll explore what we call the MLOps toolchain. The

purpose is to examine areas of MLOps you are likely to need tooling for

and how you should work with them. There are many ways to create

your own MLOps toolchain, whether you purchase a platform that

covers most, if not all, of your needs, use several more specialized tools

in combination, or build something custom using open-source tools.

While this eBook doesn’t give direct recommendations for tools, we

try to help you to be more informed to make the right choices and,

more importantly, make the most of the tools you select.

Data Platforms

In this chapter, we will be looking at the benefits of machine learning

data platforms.

Data platforms for repetitive data collection
and training cycles

Data is known to be a notorious bottleneck of many machine learning

projects. According to Cognylitica, a market research company,

data work takes up around 80% of the entire workload of a machine

learning project. Data work is highly time-intensive, so much so that

optimizing the data work process often results in optimizing the entire

machine learning project. Plus, the quality of training data directly

affects the performance of the service. One of the most famous

machine learning quotes, “Garbage in, garbage out,” well explains

how much data quality matters to machine learning performance.

Moreover, tasks like data collection, processing and management

must be performed repeatedly throughout the entire machine

learning development project and the service operation life cycle.

According to McKinsey, 34% of machine learning projects required

additional data collection and re-training at least every month, and

23% out of 34% needed at least weekly updates. This repetitive cycle

29The MLOps Toolchain - Model and Data Exploration

is inevitable in the machine learning life cycle, so practitioners must

consider introducing a machine learning data platform that manages

the entire cycle to reduce the cost.

Below are the typical cases where “data cycle” must be baked into

the overall machine learning development process.

1.	 If the model doesn’t work properly (=accuracy is lower than

required), you may have to collect more data and label them to

obtain additional training data. Or, you may have to add more

meticulously classified annotations to the existing dataset.

If you find your model working poorly with some specific

cases, you may have to balance out your biased dataset,

or collect additional “edge cases” that are low in quantity.

2.	 Once you make changes to your dataset, you may then want to

change your ML model as well. You may start to feel the need

for a high-functioning model that can learn multi-dimensional

representations. You may consider training a separate model

specialized in a certain subset of your data, or expand the class

group that the model can learn from using a model architecture

where multiple header networks can be mounted on one backbone.

3.	 Even if the model is successfully deployed, it can be exposed to

data drift (change in input data that leads to performance dip) and

lose its performance. In this case, the dataset and the model need

to be constantly updated, and re-training is required to maintain

the adequate level of performance.

In this stage, combining fragmented, stop-gap measures can never

be an ultimate solution. A production-level machine learning team

should be able to foster collaboration between the teams, build

datasets quickly and find ways to raise their quality to their maximum

potential to solve the problems.

30The MLOps Toolchain - Model and Data Exploration

Dynamic data management

Data platforms help manage dynamic data. If you believe you will

never make any change to your dataset from today and onwards,

static training will definitely be more cost-effective. However,

considering the modern development environment, there’s barely any

chance that the data remains static.

Change tracking

You must be able to track down ongoing changes in your data easily

and manage the history properly. You must track all the details of

the changes – whether only the raw data were added or annotations

were updated, etc. – in your history log and allocate the right work to

the right people. In most cases, in-house teams, third-party vendors,

product managers or project managers bear the responsibility to

update such changes for engineering teams and research teams. To

make sure everyone is on the same page, the process of updating and

sharing data must be as transparent and smooth as possible.

Versioning

As your dataset evolves, your data become more dynamic, and you

start to repeat model training experiments. While repeating, you may

sometimes come to a conclusion that you have to revert to an older

version of data or annotation. Or, you may find the need to conduct

an A/B test to compare which data are more adequate for some

specific cases. Data platforms offer change-tracking features. It

will provide the entire code lines and the source of data to help you

track every step of your machine learning dataset’s evolution. This

guarantees reproducibility, and allows you to conduct multiple tests,

back and forth. In the long run, regardless of the size, how we build

and manage machine learning data will take a similar form to how

we manage codes and collaborate with others on platforms like Git.

People will create branches of their datasets, commit changes or

updates, merge two different datasets and fix conflict if any.

31The MLOps Toolchain - Metrics and Model Optimization

Flexible manipulation

Data platforms offer various features to better manage dynamic

changes of large datasets. You can filter or sort by file name, created/

edited date, file size, and so on. Or, you can sort the data by some

unique characteristics of machine learning data – annotation type,

label, or at which stage of the data workflow your data is in (which

model was trained with it, whether the data was annotated, whether

the annotated data was reviewed, etc.). These unique characteristics

of machine learning data become a blocker to flexible manipulation of

the data, and require more than just basic file management tools.

Data labeling with AI

A machine learning project requires rounds of data labeling, which

often leads to a desperate need for data labeling automation. You

can never scale up if you don’t automate labeling and keep relying on

manual labeling.

Auto-labeling with AI

The most basic and simple way of automating labeling is to use a

pre-trained model. You can find many AI API services developed by

large tech companies or startups for face recognition, OCR, common

object recognition, etc., in the market. Data platforms pull such API

and perform the initial labeling that human labelers can revise later.

Or, you can leverage interactive AI models that convert bounding box

annotations into polygon segmentations, or help you shape a nice

polygon segmentation annotation with just a few clicks. True, they

are fairly easy to use, but they may not be as satisfying and versatile

as you think, which begs the question of whether you can really save

the annotation cost with them.

32The MLOps Toolchain - Metrics and Model Optimization

Cases of optimizing data labeling using AI

Type Pros Cons

AI API
services

•	 	Readily available •	 	Not versatile (applicable to
specific cases only)

•	 	Too general (not trained
with your customized
dataset)

•	 	Cannot be re-trained

Interactive
AI

•	 	Easy to use
•	 	Not bounded by

class (applicable
to any object)

•	 	Questionable performance
and effectiveness (may
end up consuming more
human labor than manual
labeling)

Custom AI •	 	Optimized to
your custom
dataset

•	 	Need to carefully
investigate if this option is
cost-effective

•	 	Takes considerable time
for machine learning to
deliver economy of scale

Using your own AI model to automate labeling may trigger the “cold-

start” issue, because models can perform well only when with enough

labeled data. To address this problem, data platforms are actively

leveraging advanced machine learning techniques. Below are the

examples of such techniques:

•	 Few-shot learning

Helps you build a machine learning model with just a few sample

data.

•	 Semi-supervised learning

Helps you build a machine learning model with just a few

annotations.

•	 Weakly supervised learning

Helps you build a machine learning model with rough annotations.

•	 Transfer learning

Helps you build a machine learning model with knowledge from

different, yet similar, tasks.

33The MLOps Toolchain - Metrics and Model Optimization

•	 Active learning

Helps you annotate the most meaningful data first for model

training.

•	 Data Augmentation

Helps you increase the variety of data within the given dataset

without adding new datasets.

•	 Data Retrieval

Searches and pulls data from a larger database. For example,

desired images can be pulled from different datasets based on

image similarity metrics.

•	 Synthetic Data

Synthesizes fake images similar to your data. (It can be done with

image generation models like GAN.)

Integration with elements of ML

Most companies in the machine learning market focus on building

expertise in specific parts of the machine learning cycle, which can

be data labeling, model training, model deployment, or visualization. A

good data platform ensures that data flows smoothly from the team

that labels raw data to the team that trains and deploys the model.

Below are the elements of the machine learning life cycle, and a good

machine learning data platform should be able to integrate as many

of the below elements as possible.

34The MLOps Toolchain - Metrics and Model Optimization

•	 Cloud storage

•	 Data collection pipeline

•	 Data labeling service

•	 Machine learning framework

•	 Model training environment & service

•	 Monitoring

•	 CLI/SDK

Collaboration within an ML project

Intra-company collaboration

Large companies may have in-house data labeling teams and machine

learning teams. Labeling teams build training datasets and update

them on a data hub, and engineering teams access the hub to develop

a model. If you have to give access to many stakeholders, you must

manage their permissions properly. Also, you must be able to allocate

tasks to the right stakeholders and communicate with them if there

is any issue.

Inter-company collaboration

However, collaborating with other companies may be more common

than having all required teams within your company. For example, a

company with AI technology may collaborate with another company

that specializes in data labeling. In this case, the AI company has to

35The MLOps Toolchain - End-to-End Pipelines

create a project and invite the external party while avoiding security

risk, and the data labeling company should have access to a data

platform where they can work efficiently.

Open-source collaboration

In open-source collaborations, data work is split into smaller fragments

to allow everyone to contribute. Open-source collaborations may not

be so common at the moment, but they will be in the future. Just a

decade ago, software was considered a core intellectual property of

a company – just like machine learning is for many tech companies

now. But companies started to open up their software libraries and

projects to the public, and the same can happen to machine learning in

the next 5 to 10 years. This will allow anyone to copy datasets, create

branches, merge them, share models and analyses on datasets, and

collaborate with others to further develop the datasets. Combined

with data platforms, it will eventually allow everyone to contribute to

improving machine learning models.

Key points

1.	 Machine learning data platforms help build the cycle of data

collection and model re-training.

2.	 Data platforms allow dynamic data management, use of artificial

intelligence for data labeling, integration with various subtasks

and datasets for machine learning development, and smooth

collaboration within a machine learning project.

This chapter was authored by Superb AI. The Superb AI Suite is a platform that

automates & streamlines the processes of data processing, management and

analysis for machine learning to foster data-centric MLOps.

36The MLOps Toolchain - End-to-End Pipelines

Model and Data Exploration

Exploration is the first concrete, hands-on step of any machine

learning project. Thus, it is the most familiar step and one that

dominates education, competitions, and other hobby projects. For

many data scientists, the exploration step is analogous to a machine

learning project. This often leads to confusion when a project

advances to productization and deployment as they require different

tools and mindset.

Data Exploration

Without data, there can be no model, so data exploration precedes

model exploration quite naturally.

The purpose of data exploration is to understand the data. Computers

naturally hold all data in a tabular format, which is not natural for us.

A raw table of two million rows is not the optimal interface for human

understanding. We are great at reading the world in terms of shapes,

dimensions, and colors instead. To understand the traits of a single

variable or its relationships to other variables, one needs to have

tools to analyze the data visually. Understanding the data also leads

to transforming and processing the data into higher-level features,

which become valuable in the model exploration step.

Data exploration has the lowest requirements from a technical and

DevOps point of view. Fast iterations and visual feedback are the

critical components for the data exploration work. Notebooks are a

natural fit due to their ability to combine code, visualization, and fast

iteration cycles like no other tool out there. Many of the notebooks

for this step end up as disposable throwaways. The value is in the

insights and discoveries that they have provided, not preserving

the environment that produced them. Reproducibility, library

dependencies, and version control can bring some value but are often

not a hard requirement.

37The MLOps Toolchain - End-to-End Pipelines

Model Exploration

Model exploration can overlap with the data exploration, but it can

be thought of as a separate step. During the model exploration

step, the data scientist explores the viability of different models like

regression, decision tree, or random forest to the problem at hand.

Choosing the model often requires the data scientist to try out and

look for optimal parameters (also known as hyperparameters) within

the model. Tools exist to find the optimal models and parameters

automatically (AutoML). Still, they tend not to work well for more

complicated projects and are often not viable at all for the deep

learning cases.

Model exploration has higher requirements from the technical and

DevOps point of view than data exploration. Single notebooks are still

often used, but the dependency with 3rd party libraries, experiment

reproducibility, scalable compute infrastructure, and version control

becomes much more valuable. Data exploration can usually be

done on a local laptop; the model exploration step has much higher

computational demands. Testing the viability of a model with a

single set of parameters can sometimes take hours, if not days. An

auto-scalable cloud environment soon becomes a hard requirement

for efficient work. Model exploration costs both time and money,

so version control and reproducibility are paramount for all the

experiments.

Exploration and MLOps

Considering exploration as a separate throwaway step and not a part

of the MLOps pipeline is dangerous. It creates a gap between your

data scientists and engineers. Data scientists will simply explore

and produce huge, messy proof-of-concept notebooks and expect

engineers to do the rest, basically reinventing the wheel. Having a

unified pipeline for data scientists and engineers to move from the

first experiment to the final productized model is essential. A unified

platform for all the project steps creates a common language and

understanding from start to finish.

38The MLOps Toolchain - End-to-End Pipelines

Key Takeaways

1.	 Data exploration is a lightweight, offline task for understanding

data using visualization

2.	 Model exploration has higher requirements for computing power

and version control

3.	 Disconnecting exploration and MLOps is disconnecting data

scientists and engineers

39The MLOps Toolchain - Feature Stores

Metrics and Model Optimization

In the previous section, we discussed the ability to visualize and

explore data and associated models. Here, we consider how to value

different models and efficiently identify which models are the best

for production. In particular, how should the hyperparameters of the

model be chosen?

Metrics are the quantities which define the success or failure of

a model. How many fraudulent credit card transactions will be

identified before being approved? How many viewers will respond to

a given advertisement? How much will it cost to purchase steel in six

months?

Defining metrics is only half the battle, though. Before putting a

model into production, the data scientist must find a model which

satisfies necessary performance expectations on the key metrics.

A model’s performance is strongly impacted by its hyperparameters

(also called free parameters) such as learning rate, nodes per layer, or

maximum number of estimators.

Optimization Vocabulary

In software engineering (algorithms), optimizing a function means

rewriting it to be faster or smaller, which is an entirely different thing

and sometimes causes confusion.

In data science (mathematical), optimizing a function means changing

the input to minimize (or maximize) the output. A loss function is

the formula for the model’s error, and when someone says they are

optimizing the loss function, they are actually minimizing the model’s

error.

The act of optimizing the loss function is often called training. In

training, you repeatedly feed the model training data, adjusting it in

tiny steps, working toward smaller and smaller error. The error during

training is called training loss.

40The MLOps Toolchain - Feature Stores

Training/Validation/Test Datasets

In a production setting, it is common to divide all the available data

into three different datasets: training, validation and test datasets.

Dataset

Training dataset

60-95%

Validation dataset

3-20%

Test dataset

2-20%

These datasets are usually sampled in some stratified sense, to

consistently represent the entire population.

•	 Training dataset - Between 60-95% of the available data. Used

to compute the training loss for a model – minimizing the training

loss finds the parameters of a model (e.g., random forest splits or

neural network weights).

•	 Validation dataset - Between 3-20% of the available data.

Used to define validation metrics for a model – optimizing the

validation metrics finds the hyperparameters of a model (e.g.

SGD momentum/dropout, RF minimum split fraction, SVM box

constraint).

•	 Test dataset - Between 2-20% of the available data. Used to

compute the validation metrics on a separate dataset. After

model tuning, provides an unbiased estimate of how the validation

metrics will perform in production.

Validation metrics are the key tool in systematically identifying the

best hyperparameter choices. If hyperparameters are tuned by

minimizing the training loss, the model will likely be overfit to the

training data. Models will be better able to generalize to unseen data

when a separate validation set is used to choose the hyperparameters.

41The MLOps Toolchain - Feature Stores

Validation Metrics for Tuning and Production

Validation metrics are so-called because they help validate the

production performance of the model. These metrics should

represent the success of the model while it is being used. They can

mirror those found in an ML classroom, or they can be entirely unique

to a specific business case. Below, we give some examples.

Consider an image classification model for identifying vehicles as

either bicycles, cars, trucks or something else. A simple metric might

be the fraction of correct classifications (i.e. validation accuracy). If

this is meant to be used in a vehicle to guide the driver, an important

metric might be the fraction of misclassifications of bicycles (for rider

safety). If this model is deployed in an automated toll, maybe correct

classification of trucks would be much more important than other

vehicles. If the model is used for opening or closing a security gate,

maybe the inference time of the model would be very important.

Optimizing Metrics and Decision Making

Production ML pipelines require hyperparameter optimization,

sometimes called model tuning, to be conducted efficiently so that

models can be deployed in a timely fashion. Unfortunately, each

choice of hyperparameters requires a new model training, which

can make model tuning very costly. Furthermore, validation metrics

almost always lack gradient information, meaning that the standard

tools used for minimizing the training loss cannot be used for

optimizing the validation metrics.

Bayesian optimization is a popular tool for model tuning: it requires

no gradient information, can optimize noisy metrics and can work

with categorical parameters (such as choosing between Adam,

Adagrad and RMSProp). The core structure involves an iteration

where hyperparameters are suggested, validation metrics are

computed, those values are reported to the optimization loop, and

new hyperparameters are suggested based on these new results (to

continue the iteration).

42The MLOps Toolchain - Feature Stores

In most production settings, multiple metrics define success. In the

computer vision example earlier, the model may need to balance high

accuracy (a larger, more complicated model) with low inference time

(a smaller, simpler model). In financial trading situations, models

may need to balance high return against low risk and high liquidity

(however those may be defined). A fraud detection model may be

interested in maximizing sales (allow more transactions to proceed)

and minimizing loss (decline more transactions).

Multimetric optimization explores the tradeoff between competing

metrics. This allows modelers to understand the balance of the

key metrics and choose hyperparameters which meet their needs.

Additionally, metric thresholds, or metric constraints, can be applied

when certain metrics must meet minimum performance thresholds

of viability – maybe the vision model should maximize accuracy but

only for models with less than 100ms inference time.

After completing a model optimization with one or more metrics,

the test dataset should be used to reevaluate the metrics on any

hyperparameters being considered for production. This will confirm

the generalizability of the model before it is used in the real world.

Key Takeaways

1.	 Split available data into training, validation and test datasets.

2.	 Define and study metrics which represent success in production,

not just during training.

3.	 Identify the best hyperparameters for your metrics with as little

tuning cost as possible.

This chapter was authored by SigOpt. Organizations across a wide range of

industries trust SigOpt to solve their toughest optimization challenges.

43The MLOps Toolchain - Testing

Productionalization - End-to-End Pipelines

In a typical setting, the data scientist starts with a laptop, a static

dataset, and a problem to solve.

Is the client going to churn? Is there a nuclear mis-
sile silo in the satellite photo? What word is going to
be typed next?

To solve the problem, the data scientist takes a notebook, starts

to sanitize the dataset, transforms it into features, installs a dozen

libraries, writes code, deletes code, tries different models, changes

hyperparameters, drinks a lot of coffee, and finally comes up with a

giant notebook that finally solves the problem. On their laptop. Today.

Productionalization for ML is taking that problem-solving capability

- only existing in the data scientist’s laptop today - and refining it

into an accessible and scalable system. One that provides value at

scale and can be nurtured to keep updating and improving for years

to come.

The Manual Cycle

In the manual workflow, where no real infrastructure exists, the data

scientist hands over the huge notebook to the ML engineer.

Data preparation
Data extraction and

analysis
Model training

Offline data

Model evaluation
and validation

Model serving
Model registery

ML Ops

Manual experiment steps

Trained
model

Adapted from Google’s article, MLOps: Continuous delivery and automation
pipelines in machine learning

44The MLOps Toolchain - Testing

The engineer manually cleans up the code, and refactors it for

performance and integration with the production environment. The

engineer then figures out the required libraries and environment and

where and how to get the live data, sets up the deployment endpoint,

and finally pushes the model. In this workflow, the model is the

product.

Time goes by, and somebody alerts the team that the model might

be misbehaving. The original problem-solving capability seems to be

declining based on a gut feeling. Nobody knows for sure. The data

scientist manually grabs a new batch of offline data, starts the coffee

machine, and the entire manual cycle is ready to start all over again.

Characteristics of a manual ML pipeline:

•	 The model is the product

•	 Manual or script-driven process

•	 A disconnect between the data scientist and the engineer

•	 Slow iteration cycle

•	 No automated testing or performance monitoring

•	 No version control

The Automated Pipeline

In the automated pipeline workflow, you don’t build and maintain a

model. You build and maintain a pipeline. The pipeline is the product.

An automated pipeline consists of components and a blueprint

for how those are coupled to produce and update the most crucial

component – the model.

In the automated workflow, the data scientist doesn’t aim for a

gigantic notebook on her laptop with offline data. While she may

initially start with a single notebook, she will eventually split the

problem-solving into more manageable components.

45The MLOps Toolchain - Testing

Examples of different components:

•	 Data validation

•	 Data cleanup

•	 Training

•	 Model evaluation

•	 Model validation

•	 Re-training trigger

In addition, the pipeline also has static components like:

•	 Feature store

•	 Deployment endpoint

•	 Metadata store

•	 Source code version control

The system offers the ability to execute, iterate, and monitor a single

component in the context of the entire pipeline with the same ease

and rapid iteration as running a local notebook cell on a laptop. It also

lets you define the required inputs and outputs, library dependencies,

and monitored metrics.

This ability to split the problem solving into reproducible, predefined

and executable components forces the team to adhere to a joined

Adapted from Google’s article, MLOps: Continuous delivery and automation
pipelines in machine learning

Data extraction

Model serving

Model monitoring

Data validation Data preparation Model training Model evaluation Model validation

Feature store

Automated pipeline

Trained
model

New codeData analysis

Model registery

Code repository

Metadata store

Experimentation

New code updates how
the pipeline works and

triggers it automatically

Monitoring can have thresholds
that trigger the training pipeline

automatically

46The MLOps Toolchain - Deployment and Inference

process. A joined process, in turn, creates a well-defined language

between the data scientists and the engineers and also eventually

leads to an automated setup that is the ML equivalent of continuous

integration (CI) – a product capable of auto-updating itself.

Characteristics of an automated ML pipeline:

•	 The pipeline is the product

•	 Fully automated process

•	 Co-operation between the data scientist and the engineer

•	 Fast iteration cycle

•	 Automated testing and performance monitoring

•	 Version-controlled

Key Takeaways

1.	 The pipeline is the product, not the model. Do not deploy the

model; deploy the pipeline.

2.	 To build a pipeline, split the system down into small well-defined

components.

3.	 Model accuracy will eventually degrade as the world changes.

Prepare for it.

47The MLOps Toolchain - Deployment and Inference

Productionalization - Feature Stores

In the previous section, we talked about machine learning pipelines

with a focus on the model. Features are, however, another critical

piece for ML in production and are similarly complex to manage as

models.

When building traditional applications, developers really only need

to get code to production. And we have mature DevOps tooling and

processes to do that quickly and efficiently. Developers can now push

code out to production multiple times a day.

But when it comes to building ML-powered applications, we now also

have to get models and features to production. And that creates

additional headaches. Data scientists are not software engineers.

They build models and features in their individual notebooks. How do

these models and features then make it to production?

For models, there are tools for building machine learning pipelines and

managing the model lifecycle. MLOps platforms allow data scientists

to train models, run experiments, validate models, and finally deploy

them to production.

For features, the tool offering has been much less mature. Getting

features to production is particularly hard because we need to get

feature transformations (or pipelines) to production, and curate

the feature values to serve consistent data for training and online

inference. Data scientists typically pass their feature transformations

to data engineers to re-implement the feature pipelines with

production-hardened code. That’s a complicated process that

typically introduces weeks or months of lead time.

48The MLOps Toolchain - Deployment and Inference

DevOps Pipeline

A
P

P
S

Development

Feature Engineering

Production

Feature Serving

nuRdliuB

M
O

D
E

LS
FE

A
TU

R
E

S
 /

 D
A

TA

MLOps Pipeline
Model Serving

Train Evaluate Deploy

>_

Feature 1 Feature 1

Model Training

Tooling for managing features is almost non-existent

The Feature Store

This is where feature stores come in. Feature stores are central hubs

for features. They transform raw data into feature values, store the

values, and serve them for model training and online predictions. By

automating these steps, feature stores allow data scientists to build

and deploy features within hours instead of months. They enable

data scientists to fully control their features from development to

production, bringing DevOps-like tooling to the feature engineering

process.

Feature stores allow data scientists to:

•	 Build a library of great features collaboratively. Instead of

managing feature transformations in a local notebook, data

scientists create standard feature definitions that are managed in

a Git-backed repository. These feature definitions are then applied

49The MLOps Toolchain - Deployment and Inference

to the feature store. This brings consistency to feature definitions,

and the ability to collaborate on new features.

•	 Deploy features to production instantly. Once feature definitions

are applied to the feature store, it automates the feature

transformations and curates the feature values. Those values can

be used to create training datasets or can be served online for

real-time inference.

•	 Share, discover, and re-use features. Features and their metadata,

transformation logic, and values, are all managed in a central

feature registry and are searchable. Data scientists can easily

discover existing features and re-use them across models.

Feature Store: Interface Between Models and Data

Feature stores were first introduced by the Uber Michelangelo team.

Since then, many companies like Airbnb and Netflix have built their

own internal feature stores to solve this problem. But feature stores

are also complicated to build, and have to a large extent remained

inaccessible to less advanced organizations.

In the past year, however, we’ve seen the introduction of several open

source and commercial feature stores. They integrate with existing

Feature Store

Model ServingBatch Data

Model TrainingStreaming Data

Transform

Store
Serve

Deploy ShareBuild

Data Scientists

50The MLOps Toolchain - Deployment and Inference

data lakes, data warehouses, event streaming platforms, processing

engines, pipeline orchestrators, and ML platforms to augment the

infrastructure with feature management capabilities.

Key takeaways

1.	 Building features and getting them to production is one of the

hardest parts of productionizing ML.

2.	 Feature stores allow data scientists to build, deploy, and share

features quickly and easily.

3.	 Feature stores complement existing ML infrastructure to bring

DevOps-like capabilities to the feature lifecycle.

This chapter was authored by Tecton. They provide an enterprise-ready feature

store to make world-class machine learning accessible to every company.

51The MLOps Toolchain - Deployment and Inference

Testing

Traditional software is built by writing fixed rules against well-

defined static assumptions of the surrounding world. It is relatively

straightforward to test every single rule (unit test) or group

(integration tests) when everything is defined in advance.

Machine Learning, by definition, is about dynamically finding the

rules, based on constantly changing data, which makes testing much

more difficult. Testing in ML is like trying to hit a moving target. The

system’s behavior depends on the data’s dynamic qualities and the

various model configuration choices.

Testing is tightly linked with exploration as it should inform you what

the criteria are; for example, in regards to statistical distributions.

Data Testing

For an ML project, data is as (if not more) important than the code. Like

the unit tests for your code define and test your assumptions about

the inputs, your data validation tests should do the same for training

and inference input data. You should test for null values, abnormal

statistical distributions within a feature, and the relationships

between features.

For example, if your input is expected to be random English, one way

to test it is to calculate that ‘the’ is the most commonly occurring

word, as that is a known assumption. If some other word appears

more often than ‘the’, it probably means that your data has some

unexpected bias, or perhaps some of it is accidentally in Spanish.

Another example of validating your assumptions could be that you

make sure your input data has an even split between male and female

data if that is a valid assumption for your case.

You also need to test for relationships between features. If two or

more features are highly correlated, it can have a degrading effect

on the model’s performance and accuracy. For example, if your data

52The MLOps Toolchain - Deployment and Inference

is about products and has two similar columns for the price: taxes

included, and taxes excluded, it should trigger an alarm.

Model Testing

Once the assumptions about data are tested, we can move on to

test the models and their training. You shouldn’t just blindly deploy a

model that shows promising accuracy for your offline data and hope

for the best.

In the training phase, you can test the impact of each hyperparameter.

Running a grid-search or more advanced search strategy can uncover

reliability issues and also improve predictive performance. Using an

additional test set, disjoined from training and validation sets should

also be used whenever possible.

When deploying the model, test the relationship between your

offline metrics and the actual impact of the model in the real world.

Correlation between your offline accuracy and the real click-through

rate on your website can be measured in a small scale A/B experiment.

Another viable smoke test can be testing your new shiny model

against a simple baseline model. Trickle small amounts of live

production data to be handled by your new model as a canary test

before you fully commit.

Infrastructure Testing

Your ML pipeline should be as reproducible as possible from one day to

the next. Perfect determinism is hard, but you should work towards it.

Test the reproducibility of your training pipeline by training two or

more models side-by-side with the same data and measure any

discrepancies between metrics. Also, test things like the ability to

continue training predictably from a mid-crash checkpoint. Don’t

forget to create integration smoke tests for your entire pipeline, all

the way from first data validation down to model deployment. These

sorts of tests should run continuously and during the deployment of

53The MLOps Toolchain - Deployment and Inference

a new model version.

Rolling back to a stable model can also be vital in unexpected

circumstances or when human error occurs. You should continuously

test your rollback infrastructure, as it is your last line of defense when

all other tests have failed you.

Key Takeaways

1.	 Due to the dynamic nature of ML, testing is even more critical.

2.	 Testing code is good; testing data is paramount.

3.	 Reproducibility of the pipeline is the key to safe deployment.

54The MLOps Toolchain - Deployment and Inference

Deployment and Inference

Deployment is the act of serving an ML model to the rest of the world

via API, application, or otherwise. Inference is what the model does,

once it is deployed. Whether it is making predictions, classifying input,

or clustering data, it is always referred to as inference.

The question one should always ask first is whether you aim for

batch inference or online inference; followed by whether to do classic

centralized cloud inference or distribute the compute requirements

to your customer’s hardware (edge inference).

Batch Inference

The batch inference is the process of making inference for a batch

of requests. Instead of providing value instantly in real-time for each

request, batch inference provides answers to a set of questions

later. The batch is often processed after a fixed interval, for example,

once a day. Batch inference, at its core, is close to a classic caching

strategy in software development.

Batch inference suits any scenario where latency is not an issue.

For example, if your model needs to score all the new leads to the

sales team, it probably doesn’t matter if there is a 24-hour latency in

scoring.

Trained
model

Name Location Date Score Name Location Date Score

98

95

87

81

74

Database

Prediction pipeline

Minutes to hours

55The MLOps Toolchain - Deployment and Inference

In the MLOps context, the value of inference in fixed intervals allows

engineers to parallelize more efficiently and use a considerable

amount of computing power more predictably. The infrastructure

exposed to the outside world is much simpler to maintain and monitor,

as there is no need to connect your complex model directly into a

live online API with unpredictable traffic patterns. You also get some

time to act on the problems and fix them before any are shown to the

customer.

Online Inference

The online inference is the process of making inference in real-time.

Every request is handled by the model right away.

Online inference suits any situation where the value provided by the

model is needed right away. For example, if the model is supposed

to predict the best route for an ambulance to take or the stock

market’s volatility for the next ten minutes, every second counts. The

prediction has no value if it’s late.

In the MLOps context, online inference is much more demanding.

As the requests are handled right away, and the model is directly

connected to live and unpredictable online traffic, things can go

wrong, and they can go wrong fast. Any error or bias in the prediction

Trained
model

Prediction service

API call API response

Milliseconds

56The MLOps Toolchain - Deployment and Inference

leaks back to the customer right away. The system also needs to be

automatically scalable to accommodate the peaks in traffic. Typically,

scaling is handled by using an auto-scalable cluster like Kubernetes.

Requirements for monitoring are much higher, and reaction time for

any intervention needs to be close to zero.

Edge Inference

The classic option for deployment and inference is to use a centralized

system. Typically, you configure a Kubernetes cluster on one of the

cloud providers to handle your model’s requests. Another modern

option is to harness the computing power of your customer’s

hardware. This is called the edge inference.

Instead of having an app consume a central cloud API, you deploy

the model as part of your application directly in the user’s device or

browser. A good example would be the speech-to-text model running

on a mobile phone. Audio isn’t sent back to a server (high bandwidth

and latency requirements), but rather, the model on the phone can

transform the audio as text right away. The transcribed text can be

used for a more straightforward text request (low bandwidth and

latency) back to a server, where another model is explicitly trained to

make sense of the transcribed text input.

Milliseconds

Trained
model

On-device prediction
service

Hello

57The MLOps Toolchain - Deployment and Inference

Edge inference has an obvious upside: Perfect scaling comes for

free as the more requests you get, the more edge devices you have

at your disposal. Often, the cloud service doesn’t even need to know

that inference has happened as the model on the edge device can be

fully autonomous in this sense. The downside is that it might become

harder to maintain all the different versions out there. Depending on

your update mechanism, you might need to prepare for a wide variety

of versions of your model running in production simultaneously.

You also need to face the problem of different devices and

environments. A thousand mobile phones equal a thousand slightly

different environments. Depending on how well you encapsulate your

edge inference from the surrounding environment, you might need

to invest in a complex testing infrastructure when dealing with edge

devices.

Another potential downside is security. While you are not sending all

your data to external devices, you are sending a model that is trained

with that data. While it is usually very hard to exploit, it is still a

security concern to consider.

Key Takeaways

1.	 Use batch inference where possible. Online inference should be a

last resort.

2.	 Use edge inference where possible as it means perfect scaling for

free.

3.	 Complex setups need robust monitoring.

58Conclusion

Conclusion

Investing in machine learning will enable you to solve business cases

that were previously impossible to solve, for example, automatically

categorizing images by their contents. Contrary to ML, MLOps doesn’t

come with a promise to solve any business problems directly. Instead,

it comes with the promise to accelerate how your investments in ML

return value.

To make an analogy to a more traditional industry: machine learning

is shipping goods while MLOps is containerization. And much

like containerization of global shipping, MLOps is process and

infrastructure in equal parts. MLOps won’t yield immediate results,

and it’ll likely require commitment from a broad range of stakeholders.

Still, the process will deliver increasing benefits with the scale of your

machine learning efforts.

For some, the MLOps practice is nothing new, especially for data

scientists with a strong software engineering background. In

collaborative efforts, however, it’s often essential to emphasize that

we work by best practices.

The four critical best practices we suggest you adopt are:

•	 Versioning to ensure reproducibility of models

•	 Pipelines to build better systems collaboratively

•	 Testing to set standards for your production models

•	 Automation to save time and build towards self-healing systems

There are many different choices for MLOps tooling out on the

market and many different strategies to setting up your whole MLOps

toolchain, from building your own to buying a managed end-to-end

platform. In this eBook, we’ve tried to highlight the areas you should

consider and give some key takeaways when deciding what you need.

59Conclusion

Ultimately, the goal of MLOps is to reduce technical friction to get the

model from an idea into production in the shortest possible time, and

then to market with as little risk as possible, and you should judge

tooling decisions against that goal.

60About the Authors

Valohai is the MLOps platform purpose-built for ML Pioneers, giving

them everything they’ve been missing in one platform that just

makes sense. Empowering them to build faster and deliver stronger

products to the world.

With the Valohai platform, Preligens reduced model development

time by 80%, allowing them to ship more strategic capabilities to

their customers.

Sharper Shape cited shortening the time to launch experiments at

scale to just minutes, allowing them to test ideas quickly.

Syngenta emphasized the ability to launch 2,000 experiments

instead of 100 to reach the correct conclusions and ship models that

will truly make an impact.

Lifebit shortened their model deployment time from three weeks

to a day while removing all the previously required engineering

support.

For more, visit www.valohai.com.

Valohai is committed to delivering industry-
leading UX and support. We are a High Performer
in the MLOps category on G2.com.

About the Authors

ML. The Pioneer Way.

http://www.valohai.com

61About the Authors

Superb AI provides Superb AI Suite, a platform that automates &

streamlines the processes of data processing, management and

analysis for machine learning, to foster data-centric MLOps. Save

time and cost of data labeling and build an enterprise-level data

pipeline with Suite. Suite helps AI engineers to focus on machine

learning development rather than data work.

Visit www.superb-ai.com for more details!

SigOpt offers the most complete MLOps platform for experiment

management and model optimization to scale the AI model

development process.

For more, visit www.sigopt.com.

Built by the creators of Uber Michelangelo, Tecton provides the first

enterprise-ready feature store that manages the complete lifecycle

of features — from engineering new features to serving them online

for real-time predictions.

For more, visit www.tecton.ai.

http://www.sigopt.com
http://www.tecton.ai

	Why MLOps Matters? (Foreword)
	People of Machine Learning
	How Is Machine Learning Different from Traditional Software?
	The MLOps Workflow
	What Is the Point of MLOps?
	Risk in Machine Learning
	Time to Market
	The MLOps Workflow Enforces Best Practices

	How to Quantify Success in an MLOps Project?
	Speak the Same Language
	Use Every Project as an Opportunity to Educate Your Organization about Machine Learning
	Define Clear Shared Objective and Metrics

	Real-World Example - The Story of Two Companies
	Company 1
	Company 2
	Learnings

	The MLOps Toolchain
	Data Platforms
	Model and Data Exploration
	Metrics and Model Optimization
	Productionalization - End-to-End Pipelines
	Productionalization - Feature Stores
	Testing
	Deployment and Inference

	Conclusion
	About the Authors

